limine/host/limine.c

1396 lines
42 KiB
C

#undef IS_WINDOWS
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
#define IS_WINDOWS 1
#endif
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <time.h>
#ifndef LIMINE_NO_BIOS
#include "limine-bios-hdd.h"
#endif
static char *program_name = NULL;
static void perror_wrap(const char *fmt, ...) {
int old_errno = errno;
fprintf(stderr, "%s: ", program_name);
va_list args;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, ": %s\n", strerror(old_errno));
}
static void remove_arg(int *argc, char *argv[], int index) {
for (int i = index; i < *argc - 1; i++) {
argv[i] = argv[i + 1];
}
(*argc)--;
argv[*argc] = NULL;
}
#ifndef LIMINE_NO_BIOS
static bool quiet = false;
static int set_pos(FILE *stream, uint64_t pos) {
if (sizeof(long) >= 8) {
return fseek(stream, (long)pos, SEEK_SET);
}
long jump_size = (LONG_MAX / 2) + 1;
long last_jump = pos % jump_size;
uint64_t jumps = pos / jump_size;
rewind(stream);
for (uint64_t i = 0; i < jumps; i++) {
if (fseek(stream, jump_size, SEEK_CUR) != 0) {
return -1;
}
}
if (fseek(stream, last_jump, SEEK_CUR) != 0) {
return -1;
}
return 0;
}
#define SIZEOF_ARRAY(array) (sizeof(array) / sizeof(array[0]))
#define DIV_ROUNDUP(a, b) (((a) + ((b) - 1)) / (b))
struct gpt_table_header {
// the head
char signature[8];
uint32_t revision;
uint32_t header_size;
uint32_t crc32;
uint32_t _reserved0;
// the partitioning info
uint64_t my_lba;
uint64_t alternate_lba;
uint64_t first_usable_lba;
uint64_t last_usable_lba;
// the guid
uint64_t disk_guid[2];
// entries related
uint64_t partition_entry_lba;
uint32_t number_of_partition_entries;
uint32_t size_of_partition_entry;
uint32_t partition_entry_array_crc32;
};
struct gpt_entry {
uint64_t partition_type_guid[2];
uint64_t unique_partition_guid[2];
uint64_t starting_lba;
uint64_t ending_lba;
uint64_t attributes;
uint16_t partition_name[36];
};
struct gpt2mbr_type_conv {
uint64_t gpt_type1;
uint64_t gpt_type2;
uint8_t mbr_type;
};
// This table is very incomplete, but it should be enough for covering
// all that matters for ISOHYBRIDs.
// Of course, though, expansion is welcome.
static struct gpt2mbr_type_conv gpt2mbr_type_conv_table[] = {
{ 0x11d2f81fc12a7328, 0x3bc93ec9a0004bba, 0xef }, // EFI system partition
{ 0x4433b9e5ebd0a0a2, 0xc79926b7b668c087, 0x07 }, // Microsoft basic data
{ 0x11aa000048465300, 0xacec4365300011aa, 0xaf }, // HFS/HFS+
};
static int gpt2mbr_type(uint64_t gpt_type1, uint64_t gpt_type2) {
for (size_t i = 0; i < SIZEOF_ARRAY(gpt2mbr_type_conv_table); i++) {
if (gpt2mbr_type_conv_table[i].gpt_type1 == gpt_type1
&& gpt2mbr_type_conv_table[i].gpt_type2 == gpt_type2) {
return gpt2mbr_type_conv_table[i].mbr_type;
}
}
return -1;
}
static void lba2chs(uint8_t *chs, uint64_t lba) {
// If LBA is too big to express, use a standard value for CHS.
if (lba > 63 * 255 * 1024) {
goto lba_too_big;
}
uint64_t cylinder = lba / (255 * 63);
if (cylinder >= 1024) {
lba_too_big:
chs[0] = 0xfe;
chs[1] = 0xff;
chs[2] = 0xff;
return;
}
uint64_t head = (lba / 63) % 255;
uint64_t sector = (lba % 63) + 1;
chs[0] = head;
chs[1] = (cylinder >> 2) & 0xc0; // high 2 bits
chs[1] |= sector & 0x3f;
chs[2] = cylinder; // low 8 bits
}
static uint16_t endswap16(uint16_t value) {
uint16_t ret = 0;
ret |= (value >> 8) & 0x00ff;
ret |= (value << 8) & 0xff00;
return ret;
}
static uint32_t endswap32(uint32_t value) {
uint32_t ret = 0;
ret |= (value >> 24) & 0x000000ff;
ret |= (value >> 8) & 0x0000ff00;
ret |= (value << 8) & 0x00ff0000;
ret |= (value << 24) & 0xff000000;
return ret;
}
static uint64_t endswap64(uint64_t value) {
uint64_t ret = 0;
ret |= (value >> 56) & 0x00000000000000ff;
ret |= (value >> 40) & 0x000000000000ff00;
ret |= (value >> 24) & 0x0000000000ff0000;
ret |= (value >> 8) & 0x00000000ff000000;
ret |= (value << 8) & 0x000000ff00000000;
ret |= (value << 24) & 0x0000ff0000000000;
ret |= (value << 40) & 0x00ff000000000000;
ret |= (value << 56) & 0xff00000000000000;
return ret;
}
#ifdef __BYTE_ORDER__
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define bigendian true
#else
#define bigendian false
#endif
#else /* !__BYTE_ORDER__ */
static bool bigendian = false;
#endif /* !__BYTE_ORDER__ */
#define ENDSWAP(VALUE) (bigendian ? ( \
sizeof(VALUE) == 1 ? (VALUE) : \
sizeof(VALUE) == 2 ? endswap16(VALUE) : \
sizeof(VALUE) == 4 ? endswap32(VALUE) : \
sizeof(VALUE) == 8 ? endswap64(VALUE) : (abort(), 1) \
) : (VALUE))
static enum {
CACHE_CLEAN,
CACHE_DIRTY
} cache_state;
static uint64_t cached_block;
static uint8_t *cache = NULL;
static FILE *device = NULL;
static size_t block_size;
static bool device_init(void) {
size_t guesses[] = { 512, 2048, 4096 };
for (size_t i = 0; i < SIZEOF_ARRAY(guesses); i++) {
void *tmp = realloc(cache, guesses[i]);
if (tmp == NULL) {
perror_wrap("error: device_init(): realloc()");
return false;
}
cache = tmp;
rewind(device);
size_t ret = fread(cache, guesses[i], 1, device);
if (ret != 1) {
continue;
}
block_size = guesses[i];
if (!quiet) {
fprintf(stderr, "Physical block size of %zu bytes.\n", block_size);
}
cache_state = CACHE_CLEAN;
cached_block = 0;
return true;
}
fprintf(stderr, "error: device_init(): Couldn't determine block size of device.\n");
return false;
}
static bool device_flush_cache(void) {
if (cache_state == CACHE_CLEAN)
return true;
if (set_pos(device, cached_block * block_size) != 0) {
perror_wrap("error: device_flush_cache(): set_pos()");
return false;
}
size_t ret = fwrite(cache, block_size, 1, device);
if (ret != 1) {
if (ferror(device)) {
perror_wrap("error: device_flush_cache(): fwrite()");
}
return false;
}
cache_state = CACHE_CLEAN;
return true;
}
static bool device_cache_block(uint64_t block) {
if (cached_block == block)
return true;
if (cache_state == CACHE_DIRTY) {
if (!device_flush_cache())
return false;
}
if (set_pos(device, block * block_size) != 0) {
perror_wrap("error: device_cache_block(): set_pos()");
return false;
}
size_t ret = fread(cache, block_size, 1, device);
if (ret != 1) {
if (ferror(device)) {
perror_wrap("error: device_cache_block(): fread()");
}
return false;
}
cached_block = block;
return true;
}
struct uninstall_data {
void *data;
uint64_t loc;
uint64_t count;
};
#define UNINSTALL_DATA_MAX 256
static bool uninstalling = false;
static struct uninstall_data uninstall_data[UNINSTALL_DATA_MAX];
static struct uninstall_data uninstall_data_rev[UNINSTALL_DATA_MAX];
static uint64_t uninstall_data_i = 0;
static const char *uninstall_file = NULL;
static void reverse_uninstall_data(void) {
for (size_t i = 0, j = uninstall_data_i - 1; i < uninstall_data_i; i++, j--) {
uninstall_data_rev[j] = uninstall_data[i];
}
memcpy(uninstall_data, uninstall_data_rev, uninstall_data_i * sizeof(struct uninstall_data));
}
static void free_uninstall_data(void) {
for (size_t i = 0; i < uninstall_data_i; i++) {
free(uninstall_data[i].data);
}
}
static bool store_uninstall_data(const char *filename) {
if (!quiet) {
fprintf(stderr, "Storing uninstall data to file: `%s`...\n", filename);
}
FILE *udfile = fopen(filename, "wb");
if (udfile == NULL) {
perror_wrap("error: `%s`", filename);
goto error;
}
if (fwrite(&uninstall_data_i, sizeof(uint64_t), 1, udfile) != 1) {
goto fwrite_error;
}
for (size_t i = 0; i < uninstall_data_i; i++) {
if (fwrite(&uninstall_data[i].loc, sizeof(uint64_t), 1, udfile) != 1) {
goto fwrite_error;
}
if (fwrite(&uninstall_data[i].count, sizeof(uint64_t), 1, udfile) != 1) {
goto fwrite_error;
}
if (fwrite(uninstall_data[i].data, uninstall_data[i].count, 1, udfile) != 1) {
goto fwrite_error;
}
}
fclose(udfile);
return true;
fwrite_error:
perror_wrap("error: store_uninstall_data(): fwrite()");
error:
if (udfile != NULL) {
fclose(udfile);
}
return false;
}
static bool load_uninstall_data(const char *filename) {
size_t loaded_count = 0;
if (!quiet) {
fprintf(stderr, "Loading uninstall data from file: `%s`...\n", filename);
}
FILE *udfile = fopen(filename, "rb");
if (udfile == NULL) {
perror_wrap("error: `%s`", filename);
goto error;
}
if (fread(&uninstall_data_i, sizeof(uint64_t), 1, udfile) != 1) {
goto fread_error;
}
if (uninstall_data_i > UNINSTALL_DATA_MAX) {
fprintf(stderr, "error: load_uninstall_data(): too many entries (%zu > %d)\n",
(size_t)uninstall_data_i, UNINSTALL_DATA_MAX);
goto error;
}
for (size_t i = 0; i < uninstall_data_i; i++) {
if (fread(&uninstall_data[i].loc, sizeof(uint64_t), 1, udfile) != 1) {
goto fread_error;
}
if (fread(&uninstall_data[i].count, sizeof(uint64_t), 1, udfile) != 1) {
goto fread_error;
}
uninstall_data[i].data = malloc(uninstall_data[i].count);
if (uninstall_data[i].data == NULL) {
perror_wrap("error: load_uninstall_data(): malloc()");
goto error;
}
if (fread(uninstall_data[i].data, uninstall_data[i].count, 1, udfile) != 1) {
free(uninstall_data[i].data);
goto fread_error;
}
loaded_count++;
}
fclose(udfile);
return true;
fread_error:
perror_wrap("error: load_uninstall_data(): fread()");
error:
// Free any previously allocated uninstall data
for (size_t j = 0; j < loaded_count; j++) {
free(uninstall_data[j].data);
}
if (udfile != NULL) {
fclose(udfile);
}
return false;
}
static bool _device_read(void *_buffer, uint64_t loc, size_t count) {
uint8_t *buffer = _buffer;
uint64_t progress = 0;
while (progress < count) {
uint64_t block = (loc + progress) / block_size;
if (!device_cache_block(block)) {
return false;
}
uint64_t chunk = count - progress;
uint64_t offset = (loc + progress) % block_size;
if (chunk > block_size - offset)
chunk = block_size - offset;
memcpy(buffer + progress, &cache[offset], chunk);
progress += chunk;
}
return true;
}
static bool _device_write(const void *_buffer, uint64_t loc, size_t count) {
struct uninstall_data *ud = NULL;
if (uninstalling) {
goto skip_save;
}
if (uninstall_data_i >= UNINSTALL_DATA_MAX) {
fprintf(stderr, "error: Too many uninstall data entries! Please report this bug upstream.\n");
return false;
}
ud = &uninstall_data[uninstall_data_i];
ud->data = malloc(count);
if (ud->data == NULL) {
perror_wrap("error: _device_write(): malloc()");
return false;
}
if (!_device_read(ud->data, loc, count)) {
free(ud->data);
return false;
}
ud->loc = loc;
ud->count = count;
skip_save:;
const uint8_t *buffer = _buffer;
uint64_t progress = 0;
while (progress < count) {
uint64_t block = (loc + progress) / block_size;
if (!device_cache_block(block)) {
if (!uninstalling) {
free(ud->data);
}
return false;
}
uint64_t chunk = count - progress;
uint64_t offset = (loc + progress) % block_size;
if (chunk > block_size - offset)
chunk = block_size - offset;
memcpy(&cache[offset], buffer + progress, chunk);
cache_state = CACHE_DIRTY;
progress += chunk;
}
if (!uninstalling) {
uninstall_data_i++;
}
return true;
}
static bool uninstall(bool quiet_arg) {
bool print_cache_flush_fail = false;
bool print_write_fail = false;
bool ret = true;
uninstalling = true;
cache_state = CACHE_CLEAN;
cached_block = (uint64_t)-1;
for (size_t i = 0; i < uninstall_data_i; i++) {
struct uninstall_data *ud = &uninstall_data[i];
bool retry = false;
while (!_device_write(ud->data, ud->loc, ud->count)) {
if (retry) {
fprintf(stderr, "warning: Retry failed.\n");
print_write_fail = true;
break;
}
if (!quiet) {
fprintf(stderr, "warning: Uninstall data index %zu failed to write, retrying...\n", i);
}
if (!device_flush_cache()) {
print_cache_flush_fail = true;
}
cache_state = CACHE_CLEAN;
cached_block = (uint64_t)-1;
retry = true;
}
}
if (!device_flush_cache()) {
print_cache_flush_fail = true;
}
if (print_write_fail) {
fprintf(stderr, "error: Some data failed to be uninstalled correctly.\n");
ret = false;
}
if (print_cache_flush_fail) {
fprintf(stderr, "error: Device cache flush failure. Uninstall may be incomplete.\n");
ret = false;
}
if (ret == true && !quiet && !quiet_arg) {
fprintf(stderr, "Uninstall data restored successfully.\n");
}
return ret;
}
#define device_read(BUFFER, LOC, COUNT) \
do { \
if (!_device_read(BUFFER, LOC, COUNT)) \
goto cleanup; \
} while (0)
#define device_write(BUFFER, LOC, COUNT) \
do { \
if (!_device_write(BUFFER, LOC, COUNT)) \
goto cleanup; \
} while (0)
static void bios_install_usage(void) {
printf("usage: %s bios-install <device> [GPT partition index]\n", program_name);
printf("\n");
printf(" --force Force installation even if the safety checks fail\n");
printf(" (DANGEROUS!)\n");
printf("\n");
printf(" --uninstall Reverse the entire install procedure\n");
printf("\n");
printf(" --uninstall-data-file=<filename>\n");
printf(" Set the input (for --uninstall) or output file\n");
printf(" name of the file which contains uninstall data\n");
printf("\n");
printf(" --no-gpt-to-mbr-isohybrid-conversion\n");
printf(" Do not automatically convert a GUID partition table (GPT)\n");
printf(" found on an ISOHYBRID image into an MBR partition table\n");
printf(" (which is done for better hardware compatibility)\n");
printf("\n");
printf(" --quiet Do not print verbose diagnostic messages\n");
printf("\n");
printf(" --help | -h Display this help message\n");
printf("\n");
}
static bool validate_or_force(uint64_t offset, bool force, bool *err) {
*err = false;
char hintc[64];
device_read(hintc, offset + 3, 4);
if (memcmp(hintc, "NTFS", 4) == 0) {
if (!force) {
return false;
} else {
memset(hintc, 0, 4);
device_write(hintc, offset + 3, 4);
}
}
device_read(hintc, offset + 54, 3);
if (memcmp(hintc, "FAT", 3) == 0) {
if (!force) {
return false;
} else {
memset(hintc, 0, 5);
device_write(hintc, offset + 54, 5);
}
}
device_read(hintc, offset + 82, 3);
if (memcmp(hintc, "FAT", 3) == 0) {
if (!force) {
return false;
} else {
memset(hintc, 0, 5);
device_write(hintc, offset + 82, 5);
}
}
device_read(hintc, offset + 3, 5);
if (memcmp(hintc, "FAT32", 5) == 0) {
if (!force) {
return false;
} else {
memset(hintc, 0, 5);
device_write(hintc, offset + 3, 5);
}
}
uint16_t hint16 = 0;
device_read(&hint16, offset + 1080, sizeof(uint16_t));
hint16 = ENDSWAP(hint16);
if (hint16 == 0xef53) {
if (!force) {
return false;
} else {
hint16 = 0;
hint16 = ENDSWAP(hint16);
device_write(&hint16, offset + 1080, sizeof(uint16_t));
}
}
return true;
cleanup:
*err = true;
return false;
}
static int bios_install(int argc, char *argv[]) {
int ok = EXIT_FAILURE;
bool force = false;
bool gpt2mbr_allowed = true;
bool uninstall_mode = false;
const uint8_t *bootloader_img = binary_limine_hdd_bin_data;
size_t bootloader_file_size = sizeof(binary_limine_hdd_bin_data);
uint8_t orig_mbr[70], timestamp[6];
const char *part_ndx = NULL;
#ifndef __BYTE_ORDER__
uint32_t endcheck = 0x12345678;
uint8_t endbyte = *((uint8_t *)&endcheck);
bigendian = endbyte == 0x12;
#endif
if (argc < 2) {
bios_install_usage();
#ifdef IS_WINDOWS
system("pause");
#endif
return EXIT_FAILURE;
}
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) {
bios_install_usage();
return EXIT_SUCCESS;
} else if (strcmp(argv[i], "--quiet") == 0) {
quiet = true;
} else if (strcmp(argv[i], "--force") == 0) {
if (force && !quiet) {
fprintf(stderr, "warning: --force already set.\n");
}
force = true;
} else if (strcmp(argv[i], "--no-gpt-to-mbr-isohybrid-conversion") == 0) {
gpt2mbr_allowed = false;
} else if (strcmp(argv[i], "--uninstall") == 0) {
if (uninstall_mode && !quiet) {
fprintf(stderr, "warning: --uninstall already set.\n");
}
uninstall_mode = true;
} else if (memcmp(argv[i], "--uninstall-data-file=", 22) == 0) {
if (uninstall_file != NULL && !quiet) {
fprintf(stderr, "warning: --uninstall-data-file already set. Overriding...\n");
}
uninstall_file = argv[i] + 22;
if (strlen(uninstall_file) == 0) {
fprintf(stderr, "error: Uninstall data file has a zero-length name!\n");
return EXIT_FAILURE;
}
} else {
if (device != NULL) { // [GPT partition index]
part_ndx = argv[i]; // TODO: Make this non-positional?
} else if ((device = fopen(argv[i], "r+b")) == NULL) { // <device>
perror_wrap("error: `%s`", argv[i]);
return EXIT_FAILURE;
}
}
}
if (device == NULL) {
fprintf(stderr, "error: No device specified\n");
bios_install_usage();
return EXIT_FAILURE;
}
if (!device_init()) {
goto uninstall_mode_cleanup;
}
if (uninstall_mode) {
if (uninstall_file == NULL) {
fprintf(stderr, "error: Uninstall mode set but no --uninstall-data-file=... passed.\n");
goto uninstall_mode_cleanup;
}
if (!load_uninstall_data(uninstall_file)) {
goto uninstall_mode_cleanup;
}
if (uninstall(false) == false) {
ok = EXIT_FAILURE;
} else {
ok = EXIT_SUCCESS;
}
goto uninstall_mode_cleanup;
}
// Probe for GPT and logical block size
int gpt = 0;
struct gpt_table_header gpt_header;
uint64_t lb_guesses[] = { 512, 4096 };
uint64_t lb_size = 0;
for (size_t i = 0; i < SIZEOF_ARRAY(lb_guesses); i++) {
device_read(&gpt_header, lb_guesses[i], sizeof(struct gpt_table_header));
if (!strncmp(gpt_header.signature, "EFI PART", 8)) {
lb_size = lb_guesses[i];
gpt = 1;
if (!quiet) {
fprintf(stderr, "Installing to GPT. Logical block size of %" PRIu64 " bytes.\n",
lb_guesses[i]);
}
break;
}
}
struct gpt_table_header secondary_gpt_header;
if (gpt) {
if (!quiet) {
fprintf(stderr, "Secondary header at LBA 0x%" PRIx64 ".\n",
ENDSWAP(gpt_header.alternate_lba));
}
device_read(&secondary_gpt_header, lb_size * ENDSWAP(gpt_header.alternate_lba),
sizeof(struct gpt_table_header));
if (!strncmp(secondary_gpt_header.signature, "EFI PART", 8)) {
if (!quiet) {
fprintf(stderr, "Secondary header valid.\n");
}
} else {
fprintf(stderr, "error: Secondary header not valid, aborting.\n");
goto cleanup;
}
}
// Check if this is an ISO w/ a GPT, in which case try converting it
// to MBR for improved compatibility with a whole range of hardware that
// does not like booting off of GPT in BIOS or CSM mode, and other
// broken hardware.
if (gpt && gpt2mbr_allowed == true) {
char iso_signature[5];
device_read(iso_signature, 32769, 5);
if (strncmp(iso_signature, "CD001", 5) != 0) {
goto no_mbr_conv;
}
if (!quiet) {
fprintf(stderr, "Detected ISOHYBRID with a GUID partition table (GPT).\n");
fprintf(stderr, "Converting to MBR for improved compatibility...\n");
}
// Gather the (up to 4) GPT partition to convert.
struct {
uint64_t lba_start;
uint64_t lba_end;
uint8_t chs_start[3];
uint8_t chs_end[3];
uint8_t type;
} part_to_conv[4];
size_t part_to_conv_i = 0;
for (int64_t i = 0; i < (int64_t)ENDSWAP(gpt_header.number_of_partition_entries); i++) {
struct gpt_entry gpt_entry;
device_read(&gpt_entry,
(ENDSWAP(gpt_header.partition_entry_lba) * lb_size)
+ (i * ENDSWAP(gpt_header.size_of_partition_entry)),
sizeof(struct gpt_entry));
if (gpt_entry.unique_partition_guid[0] == 0 &&
gpt_entry.unique_partition_guid[1] == 0) {
continue;
}
if (part_to_conv_i == 4) {
if (!quiet) {
fprintf(stderr, "GPT contains more than 4 partitions, will not convert.\n");
}
goto no_mbr_conv;
}
if (ENDSWAP(gpt_entry.starting_lba) > UINT32_MAX) {
if (!quiet) {
fprintf(stderr, "Starting LBA of partition %" PRIi64 " is greater than UINT32_MAX, will not convert GPT.\n", i + 1);
}
goto no_mbr_conv;
}
part_to_conv[part_to_conv_i].lba_start = ENDSWAP(gpt_entry.starting_lba);
lba2chs(part_to_conv[part_to_conv_i].chs_start, part_to_conv[part_to_conv_i].lba_start);
if (ENDSWAP(gpt_entry.ending_lba) > UINT32_MAX) {
if (!quiet) {
fprintf(stderr, "Ending LBA of partition %" PRIi64 " is greater than UINT32_MAX, will not convert GPT.\n", i + 1);
}
goto no_mbr_conv;
}
part_to_conv[part_to_conv_i].lba_end = ENDSWAP(gpt_entry.ending_lba);
lba2chs(part_to_conv[part_to_conv_i].chs_end, part_to_conv[part_to_conv_i].lba_end);
if (part_to_conv[part_to_conv_i].lba_end - part_to_conv[part_to_conv_i].lba_start + 1 > UINT32_MAX) {
if (!quiet) {
fprintf(stderr, "Sector count of partition %" PRIi64 " is greater than UINT32_MAX, will not convert GPT.\n", i + 1);
}
goto no_mbr_conv;
}
int type = gpt2mbr_type(ENDSWAP(gpt_entry.partition_type_guid[0]),
ENDSWAP(gpt_entry.partition_type_guid[1]));
if (type == -1) {
if (!quiet) {
fprintf(stderr, "Cannot convert partition type for partition %" PRIi64 ", will not convert GPT.\n", i + 1);
}
goto no_mbr_conv;
}
part_to_conv[part_to_conv_i].type = type;
part_to_conv_i++;
}
// Nuke the GPTs.
void *empty_lba = calloc(1, lb_size);
if (empty_lba == NULL) {
perror_wrap("error: bios_install(): malloc()");
goto cleanup;
}
// ... nuke primary GPT + protective MBR.
for (size_t i = 0; i < 34; i++) {
device_write(empty_lba, i * lb_size, lb_size);
}
// ... nuke secondary GPT.
for (size_t i = 0; i < 33; i++) {
device_write(empty_lba, ((ENDSWAP(gpt_header.alternate_lba) - 32) + i) * lb_size, lb_size);
}
free(empty_lba);
// We're no longer GPT.
gpt = 0;
// Generate pseudorandom MBR disk ID.
srand(time(NULL));
for (size_t i = 0; i < 4; i++) {
uint8_t r = rand();
device_write(&r, 0x1b8 + i, 1);
}
// Write out the partition entries.
for (size_t i = 0; i < part_to_conv_i; i++) {
device_write(&part_to_conv[i].type, 0x1be + i * 16 + 0x04, 1);
uint32_t lba_start = ENDSWAP(part_to_conv[i].lba_start);
device_write(&lba_start, 0x1be + i * 16 + 0x08, 4);
uint32_t sect_count = ENDSWAP((part_to_conv[i].lba_end - part_to_conv[i].lba_start) + 1);
device_write(&sect_count, 0x1be + i * 16 + 0x0c, 4);
device_write(part_to_conv[i].chs_start, 0x1be + i * 16 + 1, 3);
device_write(part_to_conv[i].chs_end, 0x1be + i * 16 + 5, 3);
}
if (!quiet) {
fprintf(stderr, "Conversion successful.\n");
}
}
no_mbr_conv:;
int mbr = 0;
if (gpt == 0) {
// Do all sanity checks on MBR
mbr = 1;
uint8_t hint8 = 0;
uint32_t hint32 = 0;
bool any_active = false;
device_read(&hint8, 446, sizeof(uint8_t));
if (hint8 != 0x00 && hint8 != 0x80) {
if (!force) {
mbr = 0;
} else {
hint8 &= 0x80;
device_write(&hint8, 446, sizeof(uint8_t));
}
}
any_active = any_active || (hint8 & 0x80) != 0;
device_read(&hint8, 446 + 4, sizeof(uint8_t));
if (hint8 != 0x00) {
device_read(&hint32, 446 + 8, sizeof(uint32_t));
hint32 = ENDSWAP(hint32);
if (hint32 < 63) {
goto part_too_low;
}
}
device_read(&hint8, 462, sizeof(uint8_t));
if (hint8 != 0x00 && hint8 != 0x80) {
if (!force) {
mbr = 0;
} else {
hint8 &= 0x80;
device_write(&hint8, 462, sizeof(uint8_t));
}
}
any_active = any_active || (hint8 & 0x80) != 0;
device_read(&hint8, 462 + 4, sizeof(uint8_t));
if (hint8 != 0x00) {
device_read(&hint32, 462 + 8, sizeof(uint32_t));
hint32 = ENDSWAP(hint32);
if (hint32 < 63) {
goto part_too_low;
}
}
device_read(&hint8, 478, sizeof(uint8_t));
if (hint8 != 0x00 && hint8 != 0x80) {
if (!force) {
mbr = 0;
} else {
hint8 &= 0x80;
device_write(&hint8, 478, sizeof(uint8_t));
}
}
any_active = any_active || (hint8 & 0x80) != 0;
device_read(&hint8, 478 + 4, sizeof(uint8_t));
if (hint8 != 0x00) {
device_read(&hint32, 478 + 8, sizeof(uint32_t));
hint32 = ENDSWAP(hint32);
if (hint32 < 63) {
goto part_too_low;
}
}
device_read(&hint8, 494, sizeof(uint8_t));
if (hint8 != 0x00 && hint8 != 0x80) {
if (!force) {
mbr = 0;
} else {
hint8 &= 0x80;
device_write(&hint8, 494, sizeof(uint8_t));
}
}
any_active = any_active || (hint8 & 0x80) != 0;
device_read(&hint8, 494 + 4, sizeof(uint8_t));
if (hint8 != 0x00) {
device_read(&hint32, 494 + 8, sizeof(uint32_t));
hint32 = ENDSWAP(hint32);
if (hint32 < 63) {
goto part_too_low;
}
}
if (0) {
part_too_low:
fprintf(stderr, "error: A partition's start sector is less than 63, aborting.\n");
goto cleanup;
}
if (mbr) {
bool err;
mbr = validate_or_force(0, force, &err);
if (err) {
goto cleanup;
}
}
if (mbr && !any_active) {
if (!quiet) {
fprintf(stderr, "No active partition found, some systems may not boot.\n");
fprintf(stderr, "Setting partition 1 as active to work around the issue...\n");
}
hint8 = 0x80;
device_write(&hint8, 446, sizeof(uint8_t));
}
}
if (gpt == 0 && mbr == 0) {
fprintf(stderr, "error: Could not determine if the device has a valid partition table.\n");
fprintf(stderr, " Please ensure the device has a valid MBR or GPT.\n");
fprintf(stderr, " Alternatively, pass `--force` to override these checks.\n");
fprintf(stderr, " **ONLY DO THIS AT YOUR OWN RISK, DATA LOSS MAY OCCUR!**\n");
goto cleanup;
}
// Default location of stage2 for MBR (in post MBR gap)
uint64_t stage2_loc = 512;
if (gpt) {
struct gpt_entry gpt_entry;
uint32_t partition_num;
if (part_ndx != NULL) {
if (sscanf(part_ndx, "%" SCNu32, &partition_num) != 1) {
fprintf(stderr, "error: Invalid partition number format.\n");
goto cleanup;
}
partition_num--;
if (partition_num >= ENDSWAP(gpt_header.number_of_partition_entries)) {
fprintf(stderr, "error: Partition number is too large.\n");
goto cleanup;
}
device_read(&gpt_entry,
(ENDSWAP(gpt_header.partition_entry_lba) * lb_size)
+ (partition_num * ENDSWAP(gpt_header.size_of_partition_entry)),
sizeof(struct gpt_entry));
if (gpt_entry.unique_partition_guid[0] == 0 &&
gpt_entry.unique_partition_guid[1] == 0) {
fprintf(stderr, "error: No such partition: %" PRIu32 ".\n", partition_num + 1);
goto cleanup;
}
if (!force && memcmp("Hah!IdontNeedEFI", &gpt_entry.partition_type_guid, 16) != 0) {
fprintf(stderr, "error: Chosen partition for BIOS boot code is not of BIOS boot partition type.\n");
fprintf(stderr, " Pass `--force` to override this check.\n");
fprintf(stderr, " **ONLY DO THIS AT YOUR OWN RISK, DATA LOSS MAY OCCUR!**\n");
goto cleanup;
}
} else {
// Try to autodetect the BIOS boot partition
for (partition_num = 0; partition_num < ENDSWAP(gpt_header.number_of_partition_entries); partition_num++) {
device_read(&gpt_entry,
(ENDSWAP(gpt_header.partition_entry_lba) * lb_size)
+ (partition_num * ENDSWAP(gpt_header.size_of_partition_entry)),
sizeof(struct gpt_entry));
if (memcmp("Hah!IdontNeedEFI", &gpt_entry.partition_type_guid, 16) == 0) {
if (!quiet) {
fprintf(stderr, "Autodetected partition %" PRIu32 " as BIOS boot partition.\n", partition_num + 1);
}
goto bios_boot_autodetected;
}
}
fprintf(stderr, "error: Installing to a GPT device, but no BIOS boot partition specified or\n");
fprintf(stderr, " detected.\n");
goto cleanup;
}
bios_boot_autodetected:
if (((ENDSWAP(gpt_entry.ending_lba) - ENDSWAP(gpt_entry.starting_lba)) + 1) * lb_size < 32768) {
fprintf(stderr, "error: Partition %" PRIu32 " is smaller than 32KiB.\n", partition_num + 1);
goto cleanup;
}
stage2_loc = ENDSWAP(gpt_entry.starting_lba) * lb_size;
bool err;
bool valid = validate_or_force(stage2_loc, force, &err);
if (err) {
goto cleanup;
}
if (!valid) {
fprintf(stderr, "error: The partition selected to install the BIOS boot code to contains\n");
fprintf(stderr, " a recognised filesystem.\n");
fprintf(stderr, " Pass `--force` to override these checks.\n");
fprintf(stderr, " **ONLY DO THIS AT YOUR OWN RISK, DATA LOSS MAY OCCUR!**\n");
goto cleanup;
}
if (!quiet) {
fprintf(stderr, "Installing BIOS boot code to partition %" PRIu32 ".\n", partition_num + 1);
}
} else {
if (!quiet) {
fprintf(stderr, "Installing to MBR.\n");
}
}
if (!quiet) {
fprintf(stderr, "Stage 2 to be located at byte offset 0x%" PRIx64 ".\n", stage2_loc);
}
// Save original timestamp
device_read(timestamp, 218, 6);
// Save the original partition table of the device
device_read(orig_mbr, 440, 70);
// Write the bootsector from the bootloader to the device
device_write(&bootloader_img[0], 0, 512);
// Write the rest of stage 2 to the device
device_write(&bootloader_img[512], stage2_loc, bootloader_file_size - 512);
// Hardcode in the bootsector the location of stage 2
stage2_loc = ENDSWAP(stage2_loc);
device_write(&stage2_loc, 0x1a4, sizeof(uint64_t));
// Write back timestamp
device_write(timestamp, 218, 6);
// Write back the saved partition table to the device
device_write(orig_mbr, 440, 70);
if (!device_flush_cache())
goto cleanup;
if (!quiet) {
fprintf(stderr, "Reminder: Remember to copy the limine-bios.sys file in either\n"
" the root, /boot, /limine, or /boot/limine directories of\n"
" one of the partitions on the device, or boot will fail!\n");
fprintf(stderr, "Limine BIOS stages installed successfully.\n");
}
ok = EXIT_SUCCESS;
cleanup:
reverse_uninstall_data();
if (ok != EXIT_SUCCESS) {
// If we failed, attempt to reverse install process
fprintf(stderr, "Install failed, undoing work...\n");
uninstall(true);
} else if (uninstall_file != NULL) {
store_uninstall_data(uninstall_file);
}
uninstall_mode_cleanup:
free_uninstall_data();
if (cache)
free(cache);
if (device != NULL)
fclose(device);
return ok;
}
#endif
#define CONFIG_B2SUM_SIGNATURE "++CONFIG_B2SUM_SIGNATURE++"
static void enroll_config_usage(void) {
printf("usage: %s enroll-config <Limine executable> <BLAKE2B of config file>\n", program_name);
printf("\n");
printf(" --reset Remove enrolled BLAKE2B, will not check config integrity\n");
printf("\n");
printf(" --quiet Do not print verbose diagnostic messages\n");
printf("\n");
printf(" --help | -h Display this help message\n");
printf("\n");
}
static int enroll_config(int argc, char *argv[]) {
int ret = EXIT_FAILURE;
char *bootloader = NULL;
FILE *bootloader_file = NULL;
bool quiet = false;
bool reset = false;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) {
enroll_config_usage();
return EXIT_SUCCESS;
} else if (strcmp(argv[i], "--quiet") == 0) {
remove_arg(&argc, argv, i--);
quiet = true;
} else if (strcmp(argv[i], "--reset") == 0) {
remove_arg(&argc, argv, i--);
reset = true;
}
}
if (argc <= (reset ? 1 : 2)) {
enroll_config_usage();
#ifdef IS_WINDOWS
system("pause");
#endif
return EXIT_FAILURE;
}
if (!reset && strlen(argv[2]) != 128) {
fprintf(stderr, "error: BLAKE2B specified is not 128 characters long.\n");
goto cleanup;
}
bootloader_file = fopen(argv[1], "r+b");
if (bootloader_file == NULL) {
perror_wrap("error: `%s`", argv[1]);
goto cleanup;
}
if (fseek(bootloader_file, 0, SEEK_END) != 0) {
perror_wrap("error: enroll_config(): fseek()");
goto cleanup;
}
long ftell_result = ftell(bootloader_file);
if (ftell_result < 0) {
perror_wrap("error: enroll_config(): ftell()");
goto cleanup;
}
size_t bootloader_size = (size_t)ftell_result;
rewind(bootloader_file);
size_t min_size = (sizeof(CONFIG_B2SUM_SIGNATURE) - 1) + 128;
if (bootloader_size < min_size) {
fprintf(stderr, "error: Bootloader file too small (need at least %zu bytes)\n", min_size);
goto cleanup;
}
bootloader = malloc(bootloader_size);
if (bootloader == NULL) {
perror_wrap("error: enroll_config(): malloc()");
goto cleanup;
}
if (fread(bootloader, bootloader_size, 1, bootloader_file) != 1) {
perror_wrap("error: enroll_config(): fread()");
goto cleanup;
}
char *checksum_loc = NULL;
size_t checked_count = 0;
const char *config_b2sum_sign = CONFIG_B2SUM_SIGNATURE;
for (size_t i = 0; i < bootloader_size - min_size + 1; i++) {
if (bootloader[i] != config_b2sum_sign[checked_count]) {
checked_count = 0;
continue;
}
checked_count++;
if (checked_count == sizeof(CONFIG_B2SUM_SIGNATURE) - 1) {
checksum_loc = &bootloader[i + 1];
break;
}
}
if (checksum_loc == NULL) {
fprintf(stderr, "error: Checksum location not found in provided executable.\n");
goto cleanup;
}
if (!reset) {
memcpy(checksum_loc, argv[2], 128);
} else {
memset(checksum_loc, '0', 128);
}
if (fseek(bootloader_file, 0, SEEK_SET) != 0) {
perror_wrap("error: enroll_config(): fseek()");
goto cleanup;
}
if (fwrite(bootloader, bootloader_size, 1, bootloader_file) != 1) {
perror_wrap("error: enroll_config(): fwrite()");
goto cleanup;
}
if (!quiet) {
fprintf(stderr, "Config file BLAKE2B successfully %s.\n", reset ? "reset" : "enrolled");
}
ret = EXIT_SUCCESS;
cleanup:
if (bootloader != NULL) {
free(bootloader);
}
if (bootloader_file != NULL) {
fclose(bootloader_file);
}
return ret;
}
#define LIMINE_VERSION "%VERSION%"
#define LIMINE_COPYRIGHT "%COPYRIGHT%"
static void version_usage(void) {
printf("usage: %s version [options...]\n", program_name);
printf("\n");
printf(" --version-only Only print the version number without licensing info\n");
printf(" and other distractions\n");
printf("\n");
printf(" --help | -h Display this help message\n");
printf("\n");
}
static int version(int argc, char *argv[]) {
if (argc >= 2) {
if (strcmp(argv[1], "--help") == 0) {
version_usage();
return EXIT_SUCCESS;
} else if (strcmp(argv[1], "--version-only") == 0) {
puts(LIMINE_VERSION);
return EXIT_SUCCESS;
}
}
puts("Limine " LIMINE_VERSION);
puts(LIMINE_COPYRIGHT);
puts("Limine is distributed under the terms of the BSD-2-Clause license.");
puts("There is ABSOLUTELY NO WARRANTY, to the extent permitted by law.");
return EXIT_SUCCESS;
}
static void general_usage(void) {
printf("usage: %s <command> <args...>\n", program_name);
printf("\n");
printf(" --print-datadir Print the directory containing the bootloader files\n");
printf("\n");
printf(" --version Print the Limine version (like the `version` command)\n");
printf("\n");
printf(" --help | -h Display this help message\n");
printf("\n");
printf("Commands: `help`, `version`, `bios-install`, `enroll-config`\n");
printf("Use `--help` after specifying the command for command-specific help.\n");
}
static int print_datadir(void) {
#ifdef LIMINE_DATADIR
puts(LIMINE_DATADIR);
return EXIT_SUCCESS;
#else
fprintf(stderr, "error: Cannot print datadir for `limine` built standalone.\n");
return EXIT_FAILURE;
#endif
}
int main(int argc, char *argv[]) {
program_name = argv[0];
if (argc <= 1) {
general_usage();
return EXIT_FAILURE;
}
if (strcmp(argv[1], "help") == 0
|| strcmp(argv[1], "--help") == 0
|| strcmp(argv[1], "-h") == 0) {
general_usage();
return EXIT_SUCCESS;
} else if (strcmp(argv[1], "bios-install") == 0) {
#ifndef LIMINE_NO_BIOS
return bios_install(argc - 1, &argv[1]);
#else
fprintf(stderr, "error: Limine has been compiled without BIOS support.\n");
return EXIT_FAILURE;
#endif
} else if (strcmp(argv[1], "enroll-config") == 0) {
return enroll_config(argc - 1, &argv[1]);
} else if (strcmp(argv[1], "--print-datadir") == 0) {
return print_datadir();
} else if (strcmp(argv[1], "version") == 0
|| strcmp(argv[1], "--version") == 0) {
return version(argc - 1, &argv[1]);
}
general_usage();
return EXIT_FAILURE;
}