mirror of
https://github.com/Perl/perl5.git
synced 2026-01-26 08:38:23 +00:00
This updates the editor hints in our files for Emacs and vim to request that tabs be inserted as spaces.
13453 lines
459 KiB
C
13453 lines
459 KiB
C
/* regcomp.c
|
|
*/
|
|
|
|
/*
|
|
* 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
|
|
*
|
|
* [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
|
|
*/
|
|
|
|
/* This file contains functions for compiling a regular expression. See
|
|
* also regexec.c which funnily enough, contains functions for executing
|
|
* a regular expression.
|
|
*
|
|
* This file is also copied at build time to ext/re/re_comp.c, where
|
|
* it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
|
|
* This causes the main functions to be compiled under new names and with
|
|
* debugging support added, which makes "use re 'debug'" work.
|
|
*/
|
|
|
|
/* NOTE: this is derived from Henry Spencer's regexp code, and should not
|
|
* confused with the original package (see point 3 below). Thanks, Henry!
|
|
*/
|
|
|
|
/* Additional note: this code is very heavily munged from Henry's version
|
|
* in places. In some spots I've traded clarity for efficiency, so don't
|
|
* blame Henry for some of the lack of readability.
|
|
*/
|
|
|
|
/* The names of the functions have been changed from regcomp and
|
|
* regexec to pregcomp and pregexec in order to avoid conflicts
|
|
* with the POSIX routines of the same names.
|
|
*/
|
|
|
|
#ifdef PERL_EXT_RE_BUILD
|
|
#include "re_top.h"
|
|
#endif
|
|
|
|
/*
|
|
* pregcomp and pregexec -- regsub and regerror are not used in perl
|
|
*
|
|
* Copyright (c) 1986 by University of Toronto.
|
|
* Written by Henry Spencer. Not derived from licensed software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any
|
|
* purpose on any computer system, and to redistribute it freely,
|
|
* subject to the following restrictions:
|
|
*
|
|
* 1. The author is not responsible for the consequences of use of
|
|
* this software, no matter how awful, even if they arise
|
|
* from defects in it.
|
|
*
|
|
* 2. The origin of this software must not be misrepresented, either
|
|
* by explicit claim or by omission.
|
|
*
|
|
* 3. Altered versions must be plainly marked as such, and must not
|
|
* be misrepresented as being the original software.
|
|
*
|
|
*
|
|
**** Alterations to Henry's code are...
|
|
****
|
|
**** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
|
**** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
|
**** by Larry Wall and others
|
|
****
|
|
**** You may distribute under the terms of either the GNU General Public
|
|
**** License or the Artistic License, as specified in the README file.
|
|
|
|
*
|
|
* Beware that some of this code is subtly aware of the way operator
|
|
* precedence is structured in regular expressions. Serious changes in
|
|
* regular-expression syntax might require a total rethink.
|
|
*/
|
|
#include "EXTERN.h"
|
|
#define PERL_IN_REGCOMP_C
|
|
#include "perl.h"
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
# include "INTERN.h"
|
|
#endif
|
|
|
|
#define REG_COMP_C
|
|
#ifdef PERL_IN_XSUB_RE
|
|
# include "re_comp.h"
|
|
#else
|
|
# include "regcomp.h"
|
|
#endif
|
|
|
|
#include "dquote_static.c"
|
|
#ifndef PERL_IN_XSUB_RE
|
|
# include "charclass_invlists.h"
|
|
#endif
|
|
|
|
#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
|
|
|
|
#ifdef op
|
|
#undef op
|
|
#endif /* op */
|
|
|
|
#ifdef MSDOS
|
|
# if defined(BUGGY_MSC6)
|
|
/* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
|
|
# pragma optimize("a",off)
|
|
/* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
|
|
# pragma optimize("w",on )
|
|
# endif /* BUGGY_MSC6 */
|
|
#endif /* MSDOS */
|
|
|
|
#ifndef STATIC
|
|
#define STATIC static
|
|
#endif
|
|
|
|
typedef struct RExC_state_t {
|
|
U32 flags; /* are we folding, multilining? */
|
|
char *precomp; /* uncompiled string. */
|
|
REGEXP *rx_sv; /* The SV that is the regexp. */
|
|
regexp *rx; /* perl core regexp structure */
|
|
regexp_internal *rxi; /* internal data for regexp object pprivate field */
|
|
char *start; /* Start of input for compile */
|
|
char *end; /* End of input for compile */
|
|
char *parse; /* Input-scan pointer. */
|
|
I32 whilem_seen; /* number of WHILEM in this expr */
|
|
regnode *emit_start; /* Start of emitted-code area */
|
|
regnode *emit_bound; /* First regnode outside of the allocated space */
|
|
regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
|
|
I32 naughty; /* How bad is this pattern? */
|
|
I32 sawback; /* Did we see \1, ...? */
|
|
U32 seen;
|
|
I32 size; /* Code size. */
|
|
I32 npar; /* Capture buffer count, (OPEN). */
|
|
I32 cpar; /* Capture buffer count, (CLOSE). */
|
|
I32 nestroot; /* root parens we are in - used by accept */
|
|
I32 extralen;
|
|
I32 seen_zerolen;
|
|
I32 seen_evals;
|
|
regnode **open_parens; /* pointers to open parens */
|
|
regnode **close_parens; /* pointers to close parens */
|
|
regnode *opend; /* END node in program */
|
|
I32 utf8; /* whether the pattern is utf8 or not */
|
|
I32 orig_utf8; /* whether the pattern was originally in utf8 */
|
|
/* XXX use this for future optimisation of case
|
|
* where pattern must be upgraded to utf8. */
|
|
I32 uni_semantics; /* If a d charset modifier should use unicode
|
|
rules, even if the pattern is not in
|
|
utf8 */
|
|
HV *paren_names; /* Paren names */
|
|
|
|
regnode **recurse; /* Recurse regops */
|
|
I32 recurse_count; /* Number of recurse regops */
|
|
I32 in_lookbehind;
|
|
I32 contains_locale;
|
|
I32 override_recoding;
|
|
#if ADD_TO_REGEXEC
|
|
char *starttry; /* -Dr: where regtry was called. */
|
|
#define RExC_starttry (pRExC_state->starttry)
|
|
#endif
|
|
#ifdef DEBUGGING
|
|
const char *lastparse;
|
|
I32 lastnum;
|
|
AV *paren_name_list; /* idx -> name */
|
|
#define RExC_lastparse (pRExC_state->lastparse)
|
|
#define RExC_lastnum (pRExC_state->lastnum)
|
|
#define RExC_paren_name_list (pRExC_state->paren_name_list)
|
|
#endif
|
|
} RExC_state_t;
|
|
|
|
#define RExC_flags (pRExC_state->flags)
|
|
#define RExC_precomp (pRExC_state->precomp)
|
|
#define RExC_rx_sv (pRExC_state->rx_sv)
|
|
#define RExC_rx (pRExC_state->rx)
|
|
#define RExC_rxi (pRExC_state->rxi)
|
|
#define RExC_start (pRExC_state->start)
|
|
#define RExC_end (pRExC_state->end)
|
|
#define RExC_parse (pRExC_state->parse)
|
|
#define RExC_whilem_seen (pRExC_state->whilem_seen)
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
|
|
#endif
|
|
#define RExC_emit (pRExC_state->emit)
|
|
#define RExC_emit_start (pRExC_state->emit_start)
|
|
#define RExC_emit_bound (pRExC_state->emit_bound)
|
|
#define RExC_naughty (pRExC_state->naughty)
|
|
#define RExC_sawback (pRExC_state->sawback)
|
|
#define RExC_seen (pRExC_state->seen)
|
|
#define RExC_size (pRExC_state->size)
|
|
#define RExC_npar (pRExC_state->npar)
|
|
#define RExC_nestroot (pRExC_state->nestroot)
|
|
#define RExC_extralen (pRExC_state->extralen)
|
|
#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
|
|
#define RExC_seen_evals (pRExC_state->seen_evals)
|
|
#define RExC_utf8 (pRExC_state->utf8)
|
|
#define RExC_uni_semantics (pRExC_state->uni_semantics)
|
|
#define RExC_orig_utf8 (pRExC_state->orig_utf8)
|
|
#define RExC_open_parens (pRExC_state->open_parens)
|
|
#define RExC_close_parens (pRExC_state->close_parens)
|
|
#define RExC_opend (pRExC_state->opend)
|
|
#define RExC_paren_names (pRExC_state->paren_names)
|
|
#define RExC_recurse (pRExC_state->recurse)
|
|
#define RExC_recurse_count (pRExC_state->recurse_count)
|
|
#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
|
|
#define RExC_contains_locale (pRExC_state->contains_locale)
|
|
#define RExC_override_recoding (pRExC_state->override_recoding)
|
|
|
|
|
|
#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
|
|
#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
|
|
((*s) == '{' && regcurly(s)))
|
|
|
|
#ifdef SPSTART
|
|
#undef SPSTART /* dratted cpp namespace... */
|
|
#endif
|
|
/*
|
|
* Flags to be passed up and down.
|
|
*/
|
|
#define WORST 0 /* Worst case. */
|
|
#define HASWIDTH 0x01 /* Known to match non-null strings. */
|
|
|
|
/* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
|
|
* character, and if utf8, must be invariant. Note that this is not the same
|
|
* thing as REGNODE_SIMPLE */
|
|
#define SIMPLE 0x02
|
|
#define SPSTART 0x04 /* Starts with * or +. */
|
|
#define TRYAGAIN 0x08 /* Weeded out a declaration. */
|
|
#define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
|
|
|
|
#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
|
|
|
|
/* whether trie related optimizations are enabled */
|
|
#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
|
|
#define TRIE_STUDY_OPT
|
|
#define FULL_TRIE_STUDY
|
|
#define TRIE_STCLASS
|
|
#endif
|
|
|
|
|
|
|
|
#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
|
|
#define PBITVAL(paren) (1 << ((paren) & 7))
|
|
#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
|
|
#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
|
|
#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
|
|
|
|
/* If not already in utf8, do a longjmp back to the beginning */
|
|
#define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
|
|
#define REQUIRE_UTF8 STMT_START { \
|
|
if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
|
|
} STMT_END
|
|
|
|
/* About scan_data_t.
|
|
|
|
During optimisation we recurse through the regexp program performing
|
|
various inplace (keyhole style) optimisations. In addition study_chunk
|
|
and scan_commit populate this data structure with information about
|
|
what strings MUST appear in the pattern. We look for the longest
|
|
string that must appear at a fixed location, and we look for the
|
|
longest string that may appear at a floating location. So for instance
|
|
in the pattern:
|
|
|
|
/FOO[xX]A.*B[xX]BAR/
|
|
|
|
Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
|
|
strings (because they follow a .* construct). study_chunk will identify
|
|
both FOO and BAR as being the longest fixed and floating strings respectively.
|
|
|
|
The strings can be composites, for instance
|
|
|
|
/(f)(o)(o)/
|
|
|
|
will result in a composite fixed substring 'foo'.
|
|
|
|
For each string some basic information is maintained:
|
|
|
|
- offset or min_offset
|
|
This is the position the string must appear at, or not before.
|
|
It also implicitly (when combined with minlenp) tells us how many
|
|
characters must match before the string we are searching for.
|
|
Likewise when combined with minlenp and the length of the string it
|
|
tells us how many characters must appear after the string we have
|
|
found.
|
|
|
|
- max_offset
|
|
Only used for floating strings. This is the rightmost point that
|
|
the string can appear at. If set to I32 max it indicates that the
|
|
string can occur infinitely far to the right.
|
|
|
|
- minlenp
|
|
A pointer to the minimum length of the pattern that the string
|
|
was found inside. This is important as in the case of positive
|
|
lookahead or positive lookbehind we can have multiple patterns
|
|
involved. Consider
|
|
|
|
/(?=FOO).*F/
|
|
|
|
The minimum length of the pattern overall is 3, the minimum length
|
|
of the lookahead part is 3, but the minimum length of the part that
|
|
will actually match is 1. So 'FOO's minimum length is 3, but the
|
|
minimum length for the F is 1. This is important as the minimum length
|
|
is used to determine offsets in front of and behind the string being
|
|
looked for. Since strings can be composites this is the length of the
|
|
pattern at the time it was committed with a scan_commit. Note that
|
|
the length is calculated by study_chunk, so that the minimum lengths
|
|
are not known until the full pattern has been compiled, thus the
|
|
pointer to the value.
|
|
|
|
- lookbehind
|
|
|
|
In the case of lookbehind the string being searched for can be
|
|
offset past the start point of the final matching string.
|
|
If this value was just blithely removed from the min_offset it would
|
|
invalidate some of the calculations for how many chars must match
|
|
before or after (as they are derived from min_offset and minlen and
|
|
the length of the string being searched for).
|
|
When the final pattern is compiled and the data is moved from the
|
|
scan_data_t structure into the regexp structure the information
|
|
about lookbehind is factored in, with the information that would
|
|
have been lost precalculated in the end_shift field for the
|
|
associated string.
|
|
|
|
The fields pos_min and pos_delta are used to store the minimum offset
|
|
and the delta to the maximum offset at the current point in the pattern.
|
|
|
|
*/
|
|
|
|
typedef struct scan_data_t {
|
|
/*I32 len_min; unused */
|
|
/*I32 len_delta; unused */
|
|
I32 pos_min;
|
|
I32 pos_delta;
|
|
SV *last_found;
|
|
I32 last_end; /* min value, <0 unless valid. */
|
|
I32 last_start_min;
|
|
I32 last_start_max;
|
|
SV **longest; /* Either &l_fixed, or &l_float. */
|
|
SV *longest_fixed; /* longest fixed string found in pattern */
|
|
I32 offset_fixed; /* offset where it starts */
|
|
I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
|
|
I32 lookbehind_fixed; /* is the position of the string modfied by LB */
|
|
SV *longest_float; /* longest floating string found in pattern */
|
|
I32 offset_float_min; /* earliest point in string it can appear */
|
|
I32 offset_float_max; /* latest point in string it can appear */
|
|
I32 *minlen_float; /* pointer to the minlen relevant to the string */
|
|
I32 lookbehind_float; /* is the position of the string modified by LB */
|
|
I32 flags;
|
|
I32 whilem_c;
|
|
I32 *last_closep;
|
|
struct regnode_charclass_class *start_class;
|
|
} scan_data_t;
|
|
|
|
/*
|
|
* Forward declarations for pregcomp()'s friends.
|
|
*/
|
|
|
|
static const scan_data_t zero_scan_data =
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
|
|
|
|
#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
|
|
#define SF_BEFORE_SEOL 0x0001
|
|
#define SF_BEFORE_MEOL 0x0002
|
|
#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
|
|
#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
|
|
|
|
#ifdef NO_UNARY_PLUS
|
|
# define SF_FIX_SHIFT_EOL (0+2)
|
|
# define SF_FL_SHIFT_EOL (0+4)
|
|
#else
|
|
# define SF_FIX_SHIFT_EOL (+2)
|
|
# define SF_FL_SHIFT_EOL (+4)
|
|
#endif
|
|
|
|
#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
|
|
#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
|
|
|
|
#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
|
|
#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
|
|
#define SF_IS_INF 0x0040
|
|
#define SF_HAS_PAR 0x0080
|
|
#define SF_IN_PAR 0x0100
|
|
#define SF_HAS_EVAL 0x0200
|
|
#define SCF_DO_SUBSTR 0x0400
|
|
#define SCF_DO_STCLASS_AND 0x0800
|
|
#define SCF_DO_STCLASS_OR 0x1000
|
|
#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
|
|
#define SCF_WHILEM_VISITED_POS 0x2000
|
|
|
|
#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
|
|
#define SCF_SEEN_ACCEPT 0x8000
|
|
|
|
#define UTF cBOOL(RExC_utf8)
|
|
|
|
/* The enums for all these are ordered so things work out correctly */
|
|
#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
|
|
#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
|
|
#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
|
|
#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
|
|
#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
|
|
#define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
|
|
#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
|
|
|
|
#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
|
|
|
|
#define OOB_UNICODE 12345678
|
|
#define OOB_NAMEDCLASS -1
|
|
|
|
#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
|
|
#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
|
|
|
|
|
|
/* length of regex to show in messages that don't mark a position within */
|
|
#define RegexLengthToShowInErrorMessages 127
|
|
|
|
/*
|
|
* If MARKER[12] are adjusted, be sure to adjust the constants at the top
|
|
* of t/op/regmesg.t, the tests in t/op/re_tests, and those in
|
|
* op/pragma/warn/regcomp.
|
|
*/
|
|
#define MARKER1 "<-- HERE" /* marker as it appears in the description */
|
|
#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
|
|
|
|
#define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
|
|
|
|
/*
|
|
* Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
|
|
* arg. Show regex, up to a maximum length. If it's too long, chop and add
|
|
* "...".
|
|
*/
|
|
#define _FAIL(code) STMT_START { \
|
|
const char *ellipses = ""; \
|
|
IV len = RExC_end - RExC_precomp; \
|
|
\
|
|
if (!SIZE_ONLY) \
|
|
SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
|
|
if (len > RegexLengthToShowInErrorMessages) { \
|
|
/* chop 10 shorter than the max, to ensure meaning of "..." */ \
|
|
len = RegexLengthToShowInErrorMessages - 10; \
|
|
ellipses = "..."; \
|
|
} \
|
|
code; \
|
|
} STMT_END
|
|
|
|
#define FAIL(msg) _FAIL( \
|
|
Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
|
|
msg, (int)len, RExC_precomp, ellipses))
|
|
|
|
#define FAIL2(msg,arg) _FAIL( \
|
|
Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
|
|
arg, (int)len, RExC_precomp, ellipses))
|
|
|
|
/*
|
|
* Simple_vFAIL -- like FAIL, but marks the current location in the scan
|
|
*/
|
|
#define Simple_vFAIL(m) STMT_START { \
|
|
const IV offset = RExC_parse - RExC_precomp; \
|
|
Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
|
|
m, (int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
/*
|
|
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
|
|
*/
|
|
#define vFAIL(m) STMT_START { \
|
|
if (!SIZE_ONLY) \
|
|
SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
|
|
Simple_vFAIL(m); \
|
|
} STMT_END
|
|
|
|
/*
|
|
* Like Simple_vFAIL(), but accepts two arguments.
|
|
*/
|
|
#define Simple_vFAIL2(m,a1) STMT_START { \
|
|
const IV offset = RExC_parse - RExC_precomp; \
|
|
S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
|
|
(int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
/*
|
|
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
|
|
*/
|
|
#define vFAIL2(m,a1) STMT_START { \
|
|
if (!SIZE_ONLY) \
|
|
SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
|
|
Simple_vFAIL2(m, a1); \
|
|
} STMT_END
|
|
|
|
|
|
/*
|
|
* Like Simple_vFAIL(), but accepts three arguments.
|
|
*/
|
|
#define Simple_vFAIL3(m, a1, a2) STMT_START { \
|
|
const IV offset = RExC_parse - RExC_precomp; \
|
|
S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
|
|
(int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
/*
|
|
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
|
|
*/
|
|
#define vFAIL3(m,a1,a2) STMT_START { \
|
|
if (!SIZE_ONLY) \
|
|
SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
|
|
Simple_vFAIL3(m, a1, a2); \
|
|
} STMT_END
|
|
|
|
/*
|
|
* Like Simple_vFAIL(), but accepts four arguments.
|
|
*/
|
|
#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
|
|
const IV offset = RExC_parse - RExC_precomp; \
|
|
S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
|
|
(int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
#define ckWARNreg(loc,m) STMT_START { \
|
|
const IV offset = loc - RExC_precomp; \
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
|
|
(int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
#define ckWARNregdep(loc,m) STMT_START { \
|
|
const IV offset = loc - RExC_precomp; \
|
|
Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
|
|
m REPORT_LOCATION, \
|
|
(int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
#define ckWARN2regdep(loc,m, a1) STMT_START { \
|
|
const IV offset = loc - RExC_precomp; \
|
|
Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
|
|
m REPORT_LOCATION, \
|
|
a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
#define ckWARN2reg(loc, m, a1) STMT_START { \
|
|
const IV offset = loc - RExC_precomp; \
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
|
|
a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
#define vWARN3(loc, m, a1, a2) STMT_START { \
|
|
const IV offset = loc - RExC_precomp; \
|
|
Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
|
|
a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
|
|
const IV offset = loc - RExC_precomp; \
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
|
|
a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
|
|
const IV offset = loc - RExC_precomp; \
|
|
Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
|
|
a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
|
|
const IV offset = loc - RExC_precomp; \
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
|
|
a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
|
|
const IV offset = loc - RExC_precomp; \
|
|
Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
|
|
a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
|
|
} STMT_END
|
|
|
|
|
|
/* Allow for side effects in s */
|
|
#define REGC(c,s) STMT_START { \
|
|
if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
|
|
} STMT_END
|
|
|
|
/* Macros for recording node offsets. 20001227 mjd@plover.com
|
|
* Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
|
|
* element 2*n-1 of the array. Element #2n holds the byte length node #n.
|
|
* Element 0 holds the number n.
|
|
* Position is 1 indexed.
|
|
*/
|
|
#ifndef RE_TRACK_PATTERN_OFFSETS
|
|
#define Set_Node_Offset_To_R(node,byte)
|
|
#define Set_Node_Offset(node,byte)
|
|
#define Set_Cur_Node_Offset
|
|
#define Set_Node_Length_To_R(node,len)
|
|
#define Set_Node_Length(node,len)
|
|
#define Set_Node_Cur_Length(node)
|
|
#define Node_Offset(n)
|
|
#define Node_Length(n)
|
|
#define Set_Node_Offset_Length(node,offset,len)
|
|
#define ProgLen(ri) ri->u.proglen
|
|
#define SetProgLen(ri,x) ri->u.proglen = x
|
|
#else
|
|
#define ProgLen(ri) ri->u.offsets[0]
|
|
#define SetProgLen(ri,x) ri->u.offsets[0] = x
|
|
#define Set_Node_Offset_To_R(node,byte) STMT_START { \
|
|
if (! SIZE_ONLY) { \
|
|
MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
|
|
__LINE__, (int)(node), (int)(byte))); \
|
|
if((node) < 0) { \
|
|
Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
|
|
} else { \
|
|
RExC_offsets[2*(node)-1] = (byte); \
|
|
} \
|
|
} \
|
|
} STMT_END
|
|
|
|
#define Set_Node_Offset(node,byte) \
|
|
Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
|
|
#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
|
|
|
|
#define Set_Node_Length_To_R(node,len) STMT_START { \
|
|
if (! SIZE_ONLY) { \
|
|
MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
|
|
__LINE__, (int)(node), (int)(len))); \
|
|
if((node) < 0) { \
|
|
Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
|
|
} else { \
|
|
RExC_offsets[2*(node)] = (len); \
|
|
} \
|
|
} \
|
|
} STMT_END
|
|
|
|
#define Set_Node_Length(node,len) \
|
|
Set_Node_Length_To_R((node)-RExC_emit_start, len)
|
|
#define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
|
|
#define Set_Node_Cur_Length(node) \
|
|
Set_Node_Length(node, RExC_parse - parse_start)
|
|
|
|
/* Get offsets and lengths */
|
|
#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
|
|
#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
|
|
|
|
#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
|
|
Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
|
|
Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
|
|
} STMT_END
|
|
#endif
|
|
|
|
#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
|
|
#define EXPERIMENTAL_INPLACESCAN
|
|
#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
|
|
|
|
#define DEBUG_STUDYDATA(str,data,depth) \
|
|
DEBUG_OPTIMISE_MORE_r(if(data){ \
|
|
PerlIO_printf(Perl_debug_log, \
|
|
"%*s" str "Pos:%"IVdf"/%"IVdf \
|
|
" Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
|
|
(int)(depth)*2, "", \
|
|
(IV)((data)->pos_min), \
|
|
(IV)((data)->pos_delta), \
|
|
(UV)((data)->flags), \
|
|
(IV)((data)->whilem_c), \
|
|
(IV)((data)->last_closep ? *((data)->last_closep) : -1), \
|
|
is_inf ? "INF " : "" \
|
|
); \
|
|
if ((data)->last_found) \
|
|
PerlIO_printf(Perl_debug_log, \
|
|
"Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
|
|
" %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
|
|
SvPVX_const((data)->last_found), \
|
|
(IV)((data)->last_end), \
|
|
(IV)((data)->last_start_min), \
|
|
(IV)((data)->last_start_max), \
|
|
((data)->longest && \
|
|
(data)->longest==&((data)->longest_fixed)) ? "*" : "", \
|
|
SvPVX_const((data)->longest_fixed), \
|
|
(IV)((data)->offset_fixed), \
|
|
((data)->longest && \
|
|
(data)->longest==&((data)->longest_float)) ? "*" : "", \
|
|
SvPVX_const((data)->longest_float), \
|
|
(IV)((data)->offset_float_min), \
|
|
(IV)((data)->offset_float_max) \
|
|
); \
|
|
PerlIO_printf(Perl_debug_log,"\n"); \
|
|
});
|
|
|
|
static void clear_re(pTHX_ void *r);
|
|
|
|
/* Mark that we cannot extend a found fixed substring at this point.
|
|
Update the longest found anchored substring and the longest found
|
|
floating substrings if needed. */
|
|
|
|
STATIC void
|
|
S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
|
|
{
|
|
const STRLEN l = CHR_SVLEN(data->last_found);
|
|
const STRLEN old_l = CHR_SVLEN(*data->longest);
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_SCAN_COMMIT;
|
|
|
|
if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
|
|
SvSetMagicSV(*data->longest, data->last_found);
|
|
if (*data->longest == data->longest_fixed) {
|
|
data->offset_fixed = l ? data->last_start_min : data->pos_min;
|
|
if (data->flags & SF_BEFORE_EOL)
|
|
data->flags
|
|
|= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
|
|
else
|
|
data->flags &= ~SF_FIX_BEFORE_EOL;
|
|
data->minlen_fixed=minlenp;
|
|
data->lookbehind_fixed=0;
|
|
}
|
|
else { /* *data->longest == data->longest_float */
|
|
data->offset_float_min = l ? data->last_start_min : data->pos_min;
|
|
data->offset_float_max = (l
|
|
? data->last_start_max
|
|
: data->pos_min + data->pos_delta);
|
|
if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
|
|
data->offset_float_max = I32_MAX;
|
|
if (data->flags & SF_BEFORE_EOL)
|
|
data->flags
|
|
|= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
|
|
else
|
|
data->flags &= ~SF_FL_BEFORE_EOL;
|
|
data->minlen_float=minlenp;
|
|
data->lookbehind_float=0;
|
|
}
|
|
}
|
|
SvCUR_set(data->last_found, 0);
|
|
{
|
|
SV * const sv = data->last_found;
|
|
if (SvUTF8(sv) && SvMAGICAL(sv)) {
|
|
MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
|
|
if (mg)
|
|
mg->mg_len = 0;
|
|
}
|
|
}
|
|
data->last_end = -1;
|
|
data->flags &= ~SF_BEFORE_EOL;
|
|
DEBUG_STUDYDATA("commit: ",data,0);
|
|
}
|
|
|
|
/* Can match anything (initialization) */
|
|
STATIC void
|
|
S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
|
|
{
|
|
PERL_ARGS_ASSERT_CL_ANYTHING;
|
|
|
|
ANYOF_BITMAP_SETALL(cl);
|
|
cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
|
|
|ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
|
|
|
|
/* If any portion of the regex is to operate under locale rules,
|
|
* initialization includes it. The reason this isn't done for all regexes
|
|
* is that the optimizer was written under the assumption that locale was
|
|
* all-or-nothing. Given the complexity and lack of documentation in the
|
|
* optimizer, and that there are inadequate test cases for locale, so many
|
|
* parts of it may not work properly, it is safest to avoid locale unless
|
|
* necessary. */
|
|
if (RExC_contains_locale) {
|
|
ANYOF_CLASS_SETALL(cl); /* /l uses class */
|
|
cl->flags |= ANYOF_LOCALE;
|
|
}
|
|
else {
|
|
ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
|
|
}
|
|
}
|
|
|
|
/* Can match anything (initialization) */
|
|
STATIC int
|
|
S_cl_is_anything(const struct regnode_charclass_class *cl)
|
|
{
|
|
int value;
|
|
|
|
PERL_ARGS_ASSERT_CL_IS_ANYTHING;
|
|
|
|
for (value = 0; value <= ANYOF_MAX; value += 2)
|
|
if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
|
|
return 1;
|
|
if (!(cl->flags & ANYOF_UNICODE_ALL))
|
|
return 0;
|
|
if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Can match anything (initialization) */
|
|
STATIC void
|
|
S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
|
|
{
|
|
PERL_ARGS_ASSERT_CL_INIT;
|
|
|
|
Zero(cl, 1, struct regnode_charclass_class);
|
|
cl->type = ANYOF;
|
|
cl_anything(pRExC_state, cl);
|
|
ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
|
|
}
|
|
|
|
/* These two functions currently do the exact same thing */
|
|
#define cl_init_zero S_cl_init
|
|
|
|
/* 'AND' a given class with another one. Can create false positives. 'cl'
|
|
* should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
|
|
* 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
|
|
STATIC void
|
|
S_cl_and(struct regnode_charclass_class *cl,
|
|
const struct regnode_charclass_class *and_with)
|
|
{
|
|
PERL_ARGS_ASSERT_CL_AND;
|
|
|
|
assert(and_with->type == ANYOF);
|
|
|
|
/* I (khw) am not sure all these restrictions are necessary XXX */
|
|
if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
|
|
&& !(ANYOF_CLASS_TEST_ANY_SET(cl))
|
|
&& (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
|
|
&& !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
|
|
&& !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
|
|
int i;
|
|
|
|
if (and_with->flags & ANYOF_INVERT)
|
|
for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
|
|
cl->bitmap[i] &= ~and_with->bitmap[i];
|
|
else
|
|
for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
|
|
cl->bitmap[i] &= and_with->bitmap[i];
|
|
} /* XXXX: logic is complicated otherwise, leave it along for a moment. */
|
|
|
|
if (and_with->flags & ANYOF_INVERT) {
|
|
|
|
/* Here, the and'ed node is inverted. Get the AND of the flags that
|
|
* aren't affected by the inversion. Those that are affected are
|
|
* handled individually below */
|
|
U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
|
|
cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
|
|
cl->flags |= affected_flags;
|
|
|
|
/* We currently don't know how to deal with things that aren't in the
|
|
* bitmap, but we know that the intersection is no greater than what
|
|
* is already in cl, so let there be false positives that get sorted
|
|
* out after the synthetic start class succeeds, and the node is
|
|
* matched for real. */
|
|
|
|
/* The inversion of these two flags indicate that the resulting
|
|
* intersection doesn't have them */
|
|
if (and_with->flags & ANYOF_UNICODE_ALL) {
|
|
cl->flags &= ~ANYOF_UNICODE_ALL;
|
|
}
|
|
if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
|
|
cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
|
|
}
|
|
}
|
|
else { /* and'd node is not inverted */
|
|
U8 outside_bitmap_but_not_utf8; /* Temp variable */
|
|
|
|
if (! ANYOF_NONBITMAP(and_with)) {
|
|
|
|
/* Here 'and_with' doesn't match anything outside the bitmap
|
|
* (except possibly ANYOF_UNICODE_ALL), which means the
|
|
* intersection can't either, except for ANYOF_UNICODE_ALL, in
|
|
* which case we don't know what the intersection is, but it's no
|
|
* greater than what cl already has, so can just leave it alone,
|
|
* with possible false positives */
|
|
if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
|
|
ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
|
|
cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
|
|
}
|
|
}
|
|
else if (! ANYOF_NONBITMAP(cl)) {
|
|
|
|
/* Here, 'and_with' does match something outside the bitmap, and cl
|
|
* doesn't have a list of things to match outside the bitmap. If
|
|
* cl can match all code points above 255, the intersection will
|
|
* be those above-255 code points that 'and_with' matches. If cl
|
|
* can't match all Unicode code points, it means that it can't
|
|
* match anything outside the bitmap (since the 'if' that got us
|
|
* into this block tested for that), so we leave the bitmap empty.
|
|
*/
|
|
if (cl->flags & ANYOF_UNICODE_ALL) {
|
|
ARG_SET(cl, ARG(and_with));
|
|
|
|
/* and_with's ARG may match things that don't require UTF8.
|
|
* And now cl's will too, in spite of this being an 'and'. See
|
|
* the comments below about the kludge */
|
|
cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
|
|
}
|
|
}
|
|
else {
|
|
/* Here, both 'and_with' and cl match something outside the
|
|
* bitmap. Currently we do not do the intersection, so just match
|
|
* whatever cl had at the beginning. */
|
|
}
|
|
|
|
|
|
/* Take the intersection of the two sets of flags. However, the
|
|
* ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
|
|
* kludge around the fact that this flag is not treated like the others
|
|
* which are initialized in cl_anything(). The way the optimizer works
|
|
* is that the synthetic start class (SSC) is initialized to match
|
|
* anything, and then the first time a real node is encountered, its
|
|
* values are AND'd with the SSC's with the result being the values of
|
|
* the real node. However, there are paths through the optimizer where
|
|
* the AND never gets called, so those initialized bits are set
|
|
* inappropriately, which is not usually a big deal, as they just cause
|
|
* false positives in the SSC, which will just mean a probably
|
|
* imperceptible slow down in execution. However this bit has a
|
|
* higher false positive consequence in that it can cause utf8.pm,
|
|
* utf8_heavy.pl ... to be loaded when not necessary, which is a much
|
|
* bigger slowdown and also causes significant extra memory to be used.
|
|
* In order to prevent this, the code now takes a different tack. The
|
|
* bit isn't set unless some part of the regular expression needs it,
|
|
* but once set it won't get cleared. This means that these extra
|
|
* modules won't get loaded unless there was some path through the
|
|
* pattern that would have required them anyway, and so any false
|
|
* positives that occur by not ANDing them out when they could be
|
|
* aren't as severe as they would be if we treated this bit like all
|
|
* the others */
|
|
outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
|
|
& ANYOF_NONBITMAP_NON_UTF8;
|
|
cl->flags &= and_with->flags;
|
|
cl->flags |= outside_bitmap_but_not_utf8;
|
|
}
|
|
}
|
|
|
|
/* 'OR' a given class with another one. Can create false positives. 'cl'
|
|
* should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
|
|
* 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
|
|
STATIC void
|
|
S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
|
|
{
|
|
PERL_ARGS_ASSERT_CL_OR;
|
|
|
|
if (or_with->flags & ANYOF_INVERT) {
|
|
|
|
/* Here, the or'd node is to be inverted. This means we take the
|
|
* complement of everything not in the bitmap, but currently we don't
|
|
* know what that is, so give up and match anything */
|
|
if (ANYOF_NONBITMAP(or_with)) {
|
|
cl_anything(pRExC_state, cl);
|
|
}
|
|
/* We do not use
|
|
* (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
|
|
* <= (B1 | !B2) | (CL1 | !CL2)
|
|
* which is wasteful if CL2 is small, but we ignore CL2:
|
|
* (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
|
|
* XXXX Can we handle case-fold? Unclear:
|
|
* (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
|
|
* (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
|
|
*/
|
|
else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
|
|
&& !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
|
|
&& !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
|
|
int i;
|
|
|
|
for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
|
|
cl->bitmap[i] |= ~or_with->bitmap[i];
|
|
} /* XXXX: logic is complicated otherwise */
|
|
else {
|
|
cl_anything(pRExC_state, cl);
|
|
}
|
|
|
|
/* And, we can just take the union of the flags that aren't affected
|
|
* by the inversion */
|
|
cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
|
|
|
|
/* For the remaining flags:
|
|
ANYOF_UNICODE_ALL and inverted means to not match anything above
|
|
255, which means that the union with cl should just be
|
|
what cl has in it, so can ignore this flag
|
|
ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
|
|
is 127-255 to match them, but then invert that, so the
|
|
union with cl should just be what cl has in it, so can
|
|
ignore this flag
|
|
*/
|
|
} else { /* 'or_with' is not inverted */
|
|
/* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
|
|
if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
|
|
&& (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
|
|
|| (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
|
|
int i;
|
|
|
|
/* OR char bitmap and class bitmap separately */
|
|
for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
|
|
cl->bitmap[i] |= or_with->bitmap[i];
|
|
if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
|
|
for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
|
|
cl->classflags[i] |= or_with->classflags[i];
|
|
cl->flags |= ANYOF_CLASS;
|
|
}
|
|
}
|
|
else { /* XXXX: logic is complicated, leave it along for a moment. */
|
|
cl_anything(pRExC_state, cl);
|
|
}
|
|
|
|
if (ANYOF_NONBITMAP(or_with)) {
|
|
|
|
/* Use the added node's outside-the-bit-map match if there isn't a
|
|
* conflict. If there is a conflict (both nodes match something
|
|
* outside the bitmap, but what they match outside is not the same
|
|
* pointer, and hence not easily compared until XXX we extend
|
|
* inversion lists this far), give up and allow the start class to
|
|
* match everything outside the bitmap. If that stuff is all above
|
|
* 255, can just set UNICODE_ALL, otherwise caould be anything. */
|
|
if (! ANYOF_NONBITMAP(cl)) {
|
|
ARG_SET(cl, ARG(or_with));
|
|
}
|
|
else if (ARG(cl) != ARG(or_with)) {
|
|
|
|
if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
|
|
cl_anything(pRExC_state, cl);
|
|
}
|
|
else {
|
|
cl->flags |= ANYOF_UNICODE_ALL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Take the union */
|
|
cl->flags |= or_with->flags;
|
|
}
|
|
}
|
|
|
|
#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
|
|
#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
|
|
#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
|
|
#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
|
|
|
|
|
|
#ifdef DEBUGGING
|
|
/*
|
|
dump_trie(trie,widecharmap,revcharmap)
|
|
dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
|
|
dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
|
|
|
|
These routines dump out a trie in a somewhat readable format.
|
|
The _interim_ variants are used for debugging the interim
|
|
tables that are used to generate the final compressed
|
|
representation which is what dump_trie expects.
|
|
|
|
Part of the reason for their existence is to provide a form
|
|
of documentation as to how the different representations function.
|
|
|
|
*/
|
|
|
|
/*
|
|
Dumps the final compressed table form of the trie to Perl_debug_log.
|
|
Used for debugging make_trie().
|
|
*/
|
|
|
|
STATIC void
|
|
S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
|
|
AV *revcharmap, U32 depth)
|
|
{
|
|
U32 state;
|
|
SV *sv=sv_newmortal();
|
|
int colwidth= widecharmap ? 6 : 4;
|
|
U16 word;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_DUMP_TRIE;
|
|
|
|
PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
|
|
(int)depth * 2 + 2,"",
|
|
"Match","Base","Ofs" );
|
|
|
|
for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
|
|
SV ** const tmp = av_fetch( revcharmap, state, 0);
|
|
if ( tmp ) {
|
|
PerlIO_printf( Perl_debug_log, "%*s",
|
|
colwidth,
|
|
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
|
|
PL_colors[0], PL_colors[1],
|
|
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
|
|
PERL_PV_ESCAPE_FIRSTCHAR
|
|
)
|
|
);
|
|
}
|
|
}
|
|
PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
|
|
(int)depth * 2 + 2,"");
|
|
|
|
for( state = 0 ; state < trie->uniquecharcount ; state++ )
|
|
PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
|
|
PerlIO_printf( Perl_debug_log, "\n");
|
|
|
|
for( state = 1 ; state < trie->statecount ; state++ ) {
|
|
const U32 base = trie->states[ state ].trans.base;
|
|
|
|
PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
|
|
|
|
if ( trie->states[ state ].wordnum ) {
|
|
PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
|
|
} else {
|
|
PerlIO_printf( Perl_debug_log, "%6s", "" );
|
|
}
|
|
|
|
PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
|
|
|
|
if ( base ) {
|
|
U32 ofs = 0;
|
|
|
|
while( ( base + ofs < trie->uniquecharcount ) ||
|
|
( base + ofs - trie->uniquecharcount < trie->lasttrans
|
|
&& trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
|
|
ofs++;
|
|
|
|
PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
|
|
|
|
for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
|
|
if ( ( base + ofs >= trie->uniquecharcount ) &&
|
|
( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
|
|
trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
|
|
{
|
|
PerlIO_printf( Perl_debug_log, "%*"UVXf,
|
|
colwidth,
|
|
(UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
|
|
} else {
|
|
PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
|
|
}
|
|
}
|
|
|
|
PerlIO_printf( Perl_debug_log, "]");
|
|
|
|
}
|
|
PerlIO_printf( Perl_debug_log, "\n" );
|
|
}
|
|
PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
|
|
for (word=1; word <= trie->wordcount; word++) {
|
|
PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
|
|
(int)word, (int)(trie->wordinfo[word].prev),
|
|
(int)(trie->wordinfo[word].len));
|
|
}
|
|
PerlIO_printf(Perl_debug_log, "\n" );
|
|
}
|
|
/*
|
|
Dumps a fully constructed but uncompressed trie in list form.
|
|
List tries normally only are used for construction when the number of
|
|
possible chars (trie->uniquecharcount) is very high.
|
|
Used for debugging make_trie().
|
|
*/
|
|
STATIC void
|
|
S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
|
|
HV *widecharmap, AV *revcharmap, U32 next_alloc,
|
|
U32 depth)
|
|
{
|
|
U32 state;
|
|
SV *sv=sv_newmortal();
|
|
int colwidth= widecharmap ? 6 : 4;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
|
|
|
|
/* print out the table precompression. */
|
|
PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
|
|
(int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
|
|
"------:-----+-----------------\n" );
|
|
|
|
for( state=1 ; state < next_alloc ; state ++ ) {
|
|
U16 charid;
|
|
|
|
PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
|
|
(int)depth * 2 + 2,"", (UV)state );
|
|
if ( ! trie->states[ state ].wordnum ) {
|
|
PerlIO_printf( Perl_debug_log, "%5s| ","");
|
|
} else {
|
|
PerlIO_printf( Perl_debug_log, "W%4x| ",
|
|
trie->states[ state ].wordnum
|
|
);
|
|
}
|
|
for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
|
|
SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
|
|
if ( tmp ) {
|
|
PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
|
|
colwidth,
|
|
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
|
|
PL_colors[0], PL_colors[1],
|
|
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
|
|
PERL_PV_ESCAPE_FIRSTCHAR
|
|
) ,
|
|
TRIE_LIST_ITEM(state,charid).forid,
|
|
(UV)TRIE_LIST_ITEM(state,charid).newstate
|
|
);
|
|
if (!(charid % 10))
|
|
PerlIO_printf(Perl_debug_log, "\n%*s| ",
|
|
(int)((depth * 2) + 14), "");
|
|
}
|
|
}
|
|
PerlIO_printf( Perl_debug_log, "\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
Dumps a fully constructed but uncompressed trie in table form.
|
|
This is the normal DFA style state transition table, with a few
|
|
twists to facilitate compression later.
|
|
Used for debugging make_trie().
|
|
*/
|
|
STATIC void
|
|
S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
|
|
HV *widecharmap, AV *revcharmap, U32 next_alloc,
|
|
U32 depth)
|
|
{
|
|
U32 state;
|
|
U16 charid;
|
|
SV *sv=sv_newmortal();
|
|
int colwidth= widecharmap ? 6 : 4;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
|
|
|
|
/*
|
|
print out the table precompression so that we can do a visual check
|
|
that they are identical.
|
|
*/
|
|
|
|
PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
|
|
|
|
for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
|
|
SV ** const tmp = av_fetch( revcharmap, charid, 0);
|
|
if ( tmp ) {
|
|
PerlIO_printf( Perl_debug_log, "%*s",
|
|
colwidth,
|
|
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
|
|
PL_colors[0], PL_colors[1],
|
|
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
|
|
PERL_PV_ESCAPE_FIRSTCHAR
|
|
)
|
|
);
|
|
}
|
|
}
|
|
|
|
PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
|
|
|
|
for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
|
|
PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
|
|
}
|
|
|
|
PerlIO_printf( Perl_debug_log, "\n" );
|
|
|
|
for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
|
|
|
|
PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
|
|
(int)depth * 2 + 2,"",
|
|
(UV)TRIE_NODENUM( state ) );
|
|
|
|
for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
|
|
UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
|
|
if (v)
|
|
PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
|
|
else
|
|
PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
|
|
}
|
|
if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
|
|
PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
|
|
} else {
|
|
PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
|
|
trie->states[ TRIE_NODENUM( state ) ].wordnum );
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
|
|
startbranch: the first branch in the whole branch sequence
|
|
first : start branch of sequence of branch-exact nodes.
|
|
May be the same as startbranch
|
|
last : Thing following the last branch.
|
|
May be the same as tail.
|
|
tail : item following the branch sequence
|
|
count : words in the sequence
|
|
flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
|
|
depth : indent depth
|
|
|
|
Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
|
|
|
|
A trie is an N'ary tree where the branches are determined by digital
|
|
decomposition of the key. IE, at the root node you look up the 1st character and
|
|
follow that branch repeat until you find the end of the branches. Nodes can be
|
|
marked as "accepting" meaning they represent a complete word. Eg:
|
|
|
|
/he|she|his|hers/
|
|
|
|
would convert into the following structure. Numbers represent states, letters
|
|
following numbers represent valid transitions on the letter from that state, if
|
|
the number is in square brackets it represents an accepting state, otherwise it
|
|
will be in parenthesis.
|
|
|
|
+-h->+-e->[3]-+-r->(8)-+-s->[9]
|
|
| |
|
|
| (2)
|
|
| |
|
|
(1) +-i->(6)-+-s->[7]
|
|
|
|
|
+-s->(3)-+-h->(4)-+-e->[5]
|
|
|
|
Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
|
|
|
|
This shows that when matching against the string 'hers' we will begin at state 1
|
|
read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
|
|
then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
|
|
is also accepting. Thus we know that we can match both 'he' and 'hers' with a
|
|
single traverse. We store a mapping from accepting to state to which word was
|
|
matched, and then when we have multiple possibilities we try to complete the
|
|
rest of the regex in the order in which they occured in the alternation.
|
|
|
|
The only prior NFA like behaviour that would be changed by the TRIE support is
|
|
the silent ignoring of duplicate alternations which are of the form:
|
|
|
|
/ (DUPE|DUPE) X? (?{ ... }) Y /x
|
|
|
|
Thus EVAL blocks following a trie may be called a different number of times with
|
|
and without the optimisation. With the optimisations dupes will be silently
|
|
ignored. This inconsistent behaviour of EVAL type nodes is well established as
|
|
the following demonstrates:
|
|
|
|
'words'=~/(word|word|word)(?{ print $1 })[xyz]/
|
|
|
|
which prints out 'word' three times, but
|
|
|
|
'words'=~/(word|word|word)(?{ print $1 })S/
|
|
|
|
which doesnt print it out at all. This is due to other optimisations kicking in.
|
|
|
|
Example of what happens on a structural level:
|
|
|
|
The regexp /(ac|ad|ab)+/ will produce the following debug output:
|
|
|
|
1: CURLYM[1] {1,32767}(18)
|
|
5: BRANCH(8)
|
|
6: EXACT <ac>(16)
|
|
8: BRANCH(11)
|
|
9: EXACT <ad>(16)
|
|
11: BRANCH(14)
|
|
12: EXACT <ab>(16)
|
|
16: SUCCEED(0)
|
|
17: NOTHING(18)
|
|
18: END(0)
|
|
|
|
This would be optimizable with startbranch=5, first=5, last=16, tail=16
|
|
and should turn into:
|
|
|
|
1: CURLYM[1] {1,32767}(18)
|
|
5: TRIE(16)
|
|
[Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
|
|
<ac>
|
|
<ad>
|
|
<ab>
|
|
16: SUCCEED(0)
|
|
17: NOTHING(18)
|
|
18: END(0)
|
|
|
|
Cases where tail != last would be like /(?foo|bar)baz/:
|
|
|
|
1: BRANCH(4)
|
|
2: EXACT <foo>(8)
|
|
4: BRANCH(7)
|
|
5: EXACT <bar>(8)
|
|
7: TAIL(8)
|
|
8: EXACT <baz>(10)
|
|
10: END(0)
|
|
|
|
which would be optimizable with startbranch=1, first=1, last=7, tail=8
|
|
and would end up looking like:
|
|
|
|
1: TRIE(8)
|
|
[Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
|
|
<foo>
|
|
<bar>
|
|
7: TAIL(8)
|
|
8: EXACT <baz>(10)
|
|
10: END(0)
|
|
|
|
d = uvuni_to_utf8_flags(d, uv, 0);
|
|
|
|
is the recommended Unicode-aware way of saying
|
|
|
|
*(d++) = uv;
|
|
*/
|
|
|
|
#define TRIE_STORE_REVCHAR(val) \
|
|
STMT_START { \
|
|
if (UTF) { \
|
|
SV *zlopp = newSV(7); /* XXX: optimize me */ \
|
|
unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
|
|
unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
|
|
SvCUR_set(zlopp, kapow - flrbbbbb); \
|
|
SvPOK_on(zlopp); \
|
|
SvUTF8_on(zlopp); \
|
|
av_push(revcharmap, zlopp); \
|
|
} else { \
|
|
char ooooff = (char)val; \
|
|
av_push(revcharmap, newSVpvn(&ooooff, 1)); \
|
|
} \
|
|
} STMT_END
|
|
|
|
#define TRIE_READ_CHAR STMT_START { \
|
|
wordlen++; \
|
|
if ( UTF ) { \
|
|
/* if it is UTF then it is either already folded, or does not need folding */ \
|
|
uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
|
|
} \
|
|
else if (folder == PL_fold_latin1) { \
|
|
/* if we use this folder we have to obey unicode rules on latin-1 data */ \
|
|
if ( foldlen > 0 ) { \
|
|
uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
|
|
foldlen -= len; \
|
|
scan += len; \
|
|
len = 0; \
|
|
} else { \
|
|
len = 1; \
|
|
uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
|
|
skiplen = UNISKIP(uvc); \
|
|
foldlen -= skiplen; \
|
|
scan = foldbuf + skiplen; \
|
|
} \
|
|
} else { \
|
|
/* raw data, will be folded later if needed */ \
|
|
uvc = (U32)*uc; \
|
|
len = 1; \
|
|
} \
|
|
} STMT_END
|
|
|
|
|
|
|
|
#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
|
|
if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
|
|
U32 ging = TRIE_LIST_LEN( state ) *= 2; \
|
|
Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
|
|
} \
|
|
TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
|
|
TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
|
|
TRIE_LIST_CUR( state )++; \
|
|
} STMT_END
|
|
|
|
#define TRIE_LIST_NEW(state) STMT_START { \
|
|
Newxz( trie->states[ state ].trans.list, \
|
|
4, reg_trie_trans_le ); \
|
|
TRIE_LIST_CUR( state ) = 1; \
|
|
TRIE_LIST_LEN( state ) = 4; \
|
|
} STMT_END
|
|
|
|
#define TRIE_HANDLE_WORD(state) STMT_START { \
|
|
U16 dupe= trie->states[ state ].wordnum; \
|
|
regnode * const noper_next = regnext( noper ); \
|
|
\
|
|
DEBUG_r({ \
|
|
/* store the word for dumping */ \
|
|
SV* tmp; \
|
|
if (OP(noper) != NOTHING) \
|
|
tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
|
|
else \
|
|
tmp = newSVpvn_utf8( "", 0, UTF ); \
|
|
av_push( trie_words, tmp ); \
|
|
}); \
|
|
\
|
|
curword++; \
|
|
trie->wordinfo[curword].prev = 0; \
|
|
trie->wordinfo[curword].len = wordlen; \
|
|
trie->wordinfo[curword].accept = state; \
|
|
\
|
|
if ( noper_next < tail ) { \
|
|
if (!trie->jump) \
|
|
trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
|
|
trie->jump[curword] = (U16)(noper_next - convert); \
|
|
if (!jumper) \
|
|
jumper = noper_next; \
|
|
if (!nextbranch) \
|
|
nextbranch= regnext(cur); \
|
|
} \
|
|
\
|
|
if ( dupe ) { \
|
|
/* It's a dupe. Pre-insert into the wordinfo[].prev */\
|
|
/* chain, so that when the bits of chain are later */\
|
|
/* linked together, the dups appear in the chain */\
|
|
trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
|
|
trie->wordinfo[dupe].prev = curword; \
|
|
} else { \
|
|
/* we haven't inserted this word yet. */ \
|
|
trie->states[ state ].wordnum = curword; \
|
|
} \
|
|
} STMT_END
|
|
|
|
|
|
#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
|
|
( ( base + charid >= ucharcount \
|
|
&& base + charid < ubound \
|
|
&& state == trie->trans[ base - ucharcount + charid ].check \
|
|
&& trie->trans[ base - ucharcount + charid ].next ) \
|
|
? trie->trans[ base - ucharcount + charid ].next \
|
|
: ( state==1 ? special : 0 ) \
|
|
)
|
|
|
|
#define MADE_TRIE 1
|
|
#define MADE_JUMP_TRIE 2
|
|
#define MADE_EXACT_TRIE 4
|
|
|
|
STATIC I32
|
|
S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
|
|
{
|
|
dVAR;
|
|
/* first pass, loop through and scan words */
|
|
reg_trie_data *trie;
|
|
HV *widecharmap = NULL;
|
|
AV *revcharmap = newAV();
|
|
regnode *cur;
|
|
const U32 uniflags = UTF8_ALLOW_DEFAULT;
|
|
STRLEN len = 0;
|
|
UV uvc = 0;
|
|
U16 curword = 0;
|
|
U32 next_alloc = 0;
|
|
regnode *jumper = NULL;
|
|
regnode *nextbranch = NULL;
|
|
regnode *convert = NULL;
|
|
U32 *prev_states; /* temp array mapping each state to previous one */
|
|
/* we just use folder as a flag in utf8 */
|
|
const U8 * folder = NULL;
|
|
|
|
#ifdef DEBUGGING
|
|
const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
|
|
AV *trie_words = NULL;
|
|
/* along with revcharmap, this only used during construction but both are
|
|
* useful during debugging so we store them in the struct when debugging.
|
|
*/
|
|
#else
|
|
const U32 data_slot = add_data( pRExC_state, 2, "tu" );
|
|
STRLEN trie_charcount=0;
|
|
#endif
|
|
SV *re_trie_maxbuff;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_MAKE_TRIE;
|
|
#ifndef DEBUGGING
|
|
PERL_UNUSED_ARG(depth);
|
|
#endif
|
|
|
|
switch (flags) {
|
|
case EXACT: break;
|
|
case EXACTFA:
|
|
case EXACTFU_SS:
|
|
case EXACTFU_TRICKYFOLD:
|
|
case EXACTFU: folder = PL_fold_latin1; break;
|
|
case EXACTF: folder = PL_fold; break;
|
|
case EXACTFL: folder = PL_fold_locale; break;
|
|
default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
|
|
}
|
|
|
|
trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
|
|
trie->refcount = 1;
|
|
trie->startstate = 1;
|
|
trie->wordcount = word_count;
|
|
RExC_rxi->data->data[ data_slot ] = (void*)trie;
|
|
trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
|
|
if (flags == EXACT)
|
|
trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
|
|
trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
|
|
trie->wordcount+1, sizeof(reg_trie_wordinfo));
|
|
|
|
DEBUG_r({
|
|
trie_words = newAV();
|
|
});
|
|
|
|
re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
|
|
if (!SvIOK(re_trie_maxbuff)) {
|
|
sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
|
|
}
|
|
DEBUG_OPTIMISE_r({
|
|
PerlIO_printf( Perl_debug_log,
|
|
"%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
|
|
(int)depth * 2 + 2, "",
|
|
REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
|
|
REG_NODE_NUM(last), REG_NODE_NUM(tail),
|
|
(int)depth);
|
|
});
|
|
|
|
/* Find the node we are going to overwrite */
|
|
if ( first == startbranch && OP( last ) != BRANCH ) {
|
|
/* whole branch chain */
|
|
convert = first;
|
|
} else {
|
|
/* branch sub-chain */
|
|
convert = NEXTOPER( first );
|
|
}
|
|
|
|
/* -- First loop and Setup --
|
|
|
|
We first traverse the branches and scan each word to determine if it
|
|
contains widechars, and how many unique chars there are, this is
|
|
important as we have to build a table with at least as many columns as we
|
|
have unique chars.
|
|
|
|
We use an array of integers to represent the character codes 0..255
|
|
(trie->charmap) and we use a an HV* to store Unicode characters. We use the
|
|
native representation of the character value as the key and IV's for the
|
|
coded index.
|
|
|
|
*TODO* If we keep track of how many times each character is used we can
|
|
remap the columns so that the table compression later on is more
|
|
efficient in terms of memory by ensuring the most common value is in the
|
|
middle and the least common are on the outside. IMO this would be better
|
|
than a most to least common mapping as theres a decent chance the most
|
|
common letter will share a node with the least common, meaning the node
|
|
will not be compressible. With a middle is most common approach the worst
|
|
case is when we have the least common nodes twice.
|
|
|
|
*/
|
|
|
|
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
|
|
regnode * const noper = NEXTOPER( cur );
|
|
const U8 *uc = (U8*)STRING( noper );
|
|
const U8 * const e = uc + STR_LEN( noper );
|
|
STRLEN foldlen = 0;
|
|
U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
|
|
STRLEN skiplen = 0;
|
|
const U8 *scan = (U8*)NULL;
|
|
U32 wordlen = 0; /* required init */
|
|
STRLEN chars = 0;
|
|
bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
|
|
|
|
if (OP(noper) == NOTHING) {
|
|
trie->minlen= 0;
|
|
continue;
|
|
}
|
|
if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
|
|
TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
|
|
regardless of encoding */
|
|
if (OP( noper ) == EXACTFU_SS) {
|
|
/* false positives are ok, so just set this */
|
|
TRIE_BITMAP_SET(trie,0xDF);
|
|
}
|
|
}
|
|
for ( ; uc < e ; uc += len ) {
|
|
TRIE_CHARCOUNT(trie)++;
|
|
TRIE_READ_CHAR;
|
|
chars++;
|
|
if ( uvc < 256 ) {
|
|
if ( folder ) {
|
|
U8 folded= folder[ (U8) uvc ];
|
|
if ( !trie->charmap[ folded ] ) {
|
|
trie->charmap[ folded ]=( ++trie->uniquecharcount );
|
|
TRIE_STORE_REVCHAR( folded );
|
|
}
|
|
}
|
|
if ( !trie->charmap[ uvc ] ) {
|
|
trie->charmap[ uvc ]=( ++trie->uniquecharcount );
|
|
TRIE_STORE_REVCHAR( uvc );
|
|
}
|
|
if ( set_bit ) {
|
|
/* store the codepoint in the bitmap, and its folded
|
|
* equivalent. */
|
|
TRIE_BITMAP_SET(trie, uvc);
|
|
|
|
/* store the folded codepoint */
|
|
if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
|
|
|
|
if ( !UTF ) {
|
|
/* store first byte of utf8 representation of
|
|
variant codepoints */
|
|
if (! UNI_IS_INVARIANT(uvc)) {
|
|
TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
|
|
}
|
|
}
|
|
set_bit = 0; /* We've done our bit :-) */
|
|
}
|
|
} else {
|
|
SV** svpp;
|
|
if ( !widecharmap )
|
|
widecharmap = newHV();
|
|
|
|
svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
|
|
|
|
if ( !svpp )
|
|
Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
|
|
|
|
if ( !SvTRUE( *svpp ) ) {
|
|
sv_setiv( *svpp, ++trie->uniquecharcount );
|
|
TRIE_STORE_REVCHAR(uvc);
|
|
}
|
|
}
|
|
}
|
|
if( cur == first ) {
|
|
trie->minlen = chars;
|
|
trie->maxlen = chars;
|
|
} else if (chars < trie->minlen) {
|
|
trie->minlen = chars;
|
|
} else if (chars > trie->maxlen) {
|
|
trie->maxlen = chars;
|
|
}
|
|
if (OP( noper ) == EXACTFU_SS) {
|
|
/* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
|
|
if (trie->minlen > 1)
|
|
trie->minlen= 1;
|
|
}
|
|
if (OP( noper ) == EXACTFU_TRICKYFOLD) {
|
|
/* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
|
|
* - We assume that any such sequence might match a 2 byte string */
|
|
if (trie->minlen > 2 )
|
|
trie->minlen= 2;
|
|
}
|
|
|
|
} /* end first pass */
|
|
DEBUG_TRIE_COMPILE_r(
|
|
PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
|
|
(int)depth * 2 + 2,"",
|
|
( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
|
|
(int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
|
|
(int)trie->minlen, (int)trie->maxlen )
|
|
);
|
|
|
|
/*
|
|
We now know what we are dealing with in terms of unique chars and
|
|
string sizes so we can calculate how much memory a naive
|
|
representation using a flat table will take. If it's over a reasonable
|
|
limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
|
|
conservative but potentially much slower representation using an array
|
|
of lists.
|
|
|
|
At the end we convert both representations into the same compressed
|
|
form that will be used in regexec.c for matching with. The latter
|
|
is a form that cannot be used to construct with but has memory
|
|
properties similar to the list form and access properties similar
|
|
to the table form making it both suitable for fast searches and
|
|
small enough that its feasable to store for the duration of a program.
|
|
|
|
See the comment in the code where the compressed table is produced
|
|
inplace from the flat tabe representation for an explanation of how
|
|
the compression works.
|
|
|
|
*/
|
|
|
|
|
|
Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
|
|
prev_states[1] = 0;
|
|
|
|
if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
|
|
/*
|
|
Second Pass -- Array Of Lists Representation
|
|
|
|
Each state will be represented by a list of charid:state records
|
|
(reg_trie_trans_le) the first such element holds the CUR and LEN
|
|
points of the allocated array. (See defines above).
|
|
|
|
We build the initial structure using the lists, and then convert
|
|
it into the compressed table form which allows faster lookups
|
|
(but cant be modified once converted).
|
|
*/
|
|
|
|
STRLEN transcount = 1;
|
|
|
|
DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
|
|
"%*sCompiling trie using list compiler\n",
|
|
(int)depth * 2 + 2, ""));
|
|
|
|
trie->states = (reg_trie_state *)
|
|
PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
|
|
sizeof(reg_trie_state) );
|
|
TRIE_LIST_NEW(1);
|
|
next_alloc = 2;
|
|
|
|
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
|
|
|
|
regnode * const noper = NEXTOPER( cur );
|
|
U8 *uc = (U8*)STRING( noper );
|
|
const U8 * const e = uc + STR_LEN( noper );
|
|
U32 state = 1; /* required init */
|
|
U16 charid = 0; /* sanity init */
|
|
U8 *scan = (U8*)NULL; /* sanity init */
|
|
STRLEN foldlen = 0; /* required init */
|
|
U32 wordlen = 0; /* required init */
|
|
U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
|
|
STRLEN skiplen = 0;
|
|
|
|
if (OP(noper) != NOTHING) {
|
|
for ( ; uc < e ; uc += len ) {
|
|
|
|
TRIE_READ_CHAR;
|
|
|
|
if ( uvc < 256 ) {
|
|
charid = trie->charmap[ uvc ];
|
|
} else {
|
|
SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
|
|
if ( !svpp ) {
|
|
charid = 0;
|
|
} else {
|
|
charid=(U16)SvIV( *svpp );
|
|
}
|
|
}
|
|
/* charid is now 0 if we dont know the char read, or nonzero if we do */
|
|
if ( charid ) {
|
|
|
|
U16 check;
|
|
U32 newstate = 0;
|
|
|
|
charid--;
|
|
if ( !trie->states[ state ].trans.list ) {
|
|
TRIE_LIST_NEW( state );
|
|
}
|
|
for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
|
|
if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
|
|
newstate = TRIE_LIST_ITEM( state, check ).newstate;
|
|
break;
|
|
}
|
|
}
|
|
if ( ! newstate ) {
|
|
newstate = next_alloc++;
|
|
prev_states[newstate] = state;
|
|
TRIE_LIST_PUSH( state, charid, newstate );
|
|
transcount++;
|
|
}
|
|
state = newstate;
|
|
} else {
|
|
Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
|
|
}
|
|
}
|
|
}
|
|
TRIE_HANDLE_WORD(state);
|
|
|
|
} /* end second pass */
|
|
|
|
/* next alloc is the NEXT state to be allocated */
|
|
trie->statecount = next_alloc;
|
|
trie->states = (reg_trie_state *)
|
|
PerlMemShared_realloc( trie->states,
|
|
next_alloc
|
|
* sizeof(reg_trie_state) );
|
|
|
|
/* and now dump it out before we compress it */
|
|
DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
|
|
revcharmap, next_alloc,
|
|
depth+1)
|
|
);
|
|
|
|
trie->trans = (reg_trie_trans *)
|
|
PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
|
|
{
|
|
U32 state;
|
|
U32 tp = 0;
|
|
U32 zp = 0;
|
|
|
|
|
|
for( state=1 ; state < next_alloc ; state ++ ) {
|
|
U32 base=0;
|
|
|
|
/*
|
|
DEBUG_TRIE_COMPILE_MORE_r(
|
|
PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
|
|
);
|
|
*/
|
|
|
|
if (trie->states[state].trans.list) {
|
|
U16 minid=TRIE_LIST_ITEM( state, 1).forid;
|
|
U16 maxid=minid;
|
|
U16 idx;
|
|
|
|
for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
|
|
const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
|
|
if ( forid < minid ) {
|
|
minid=forid;
|
|
} else if ( forid > maxid ) {
|
|
maxid=forid;
|
|
}
|
|
}
|
|
if ( transcount < tp + maxid - minid + 1) {
|
|
transcount *= 2;
|
|
trie->trans = (reg_trie_trans *)
|
|
PerlMemShared_realloc( trie->trans,
|
|
transcount
|
|
* sizeof(reg_trie_trans) );
|
|
Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
|
|
}
|
|
base = trie->uniquecharcount + tp - minid;
|
|
if ( maxid == minid ) {
|
|
U32 set = 0;
|
|
for ( ; zp < tp ; zp++ ) {
|
|
if ( ! trie->trans[ zp ].next ) {
|
|
base = trie->uniquecharcount + zp - minid;
|
|
trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
|
|
trie->trans[ zp ].check = state;
|
|
set = 1;
|
|
break;
|
|
}
|
|
}
|
|
if ( !set ) {
|
|
trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
|
|
trie->trans[ tp ].check = state;
|
|
tp++;
|
|
zp = tp;
|
|
}
|
|
} else {
|
|
for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
|
|
const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
|
|
trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
|
|
trie->trans[ tid ].check = state;
|
|
}
|
|
tp += ( maxid - minid + 1 );
|
|
}
|
|
Safefree(trie->states[ state ].trans.list);
|
|
}
|
|
/*
|
|
DEBUG_TRIE_COMPILE_MORE_r(
|
|
PerlIO_printf( Perl_debug_log, " base: %d\n",base);
|
|
);
|
|
*/
|
|
trie->states[ state ].trans.base=base;
|
|
}
|
|
trie->lasttrans = tp + 1;
|
|
}
|
|
} else {
|
|
/*
|
|
Second Pass -- Flat Table Representation.
|
|
|
|
we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
|
|
We know that we will need Charcount+1 trans at most to store the data
|
|
(one row per char at worst case) So we preallocate both structures
|
|
assuming worst case.
|
|
|
|
We then construct the trie using only the .next slots of the entry
|
|
structs.
|
|
|
|
We use the .check field of the first entry of the node temporarily to
|
|
make compression both faster and easier by keeping track of how many non
|
|
zero fields are in the node.
|
|
|
|
Since trans are numbered from 1 any 0 pointer in the table is a FAIL
|
|
transition.
|
|
|
|
There are two terms at use here: state as a TRIE_NODEIDX() which is a
|
|
number representing the first entry of the node, and state as a
|
|
TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
|
|
TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
|
|
are 2 entrys per node. eg:
|
|
|
|
A B A B
|
|
1. 2 4 1. 3 7
|
|
2. 0 3 3. 0 5
|
|
3. 0 0 5. 0 0
|
|
4. 0 0 7. 0 0
|
|
|
|
The table is internally in the right hand, idx form. However as we also
|
|
have to deal with the states array which is indexed by nodenum we have to
|
|
use TRIE_NODENUM() to convert.
|
|
|
|
*/
|
|
DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
|
|
"%*sCompiling trie using table compiler\n",
|
|
(int)depth * 2 + 2, ""));
|
|
|
|
trie->trans = (reg_trie_trans *)
|
|
PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
|
|
* trie->uniquecharcount + 1,
|
|
sizeof(reg_trie_trans) );
|
|
trie->states = (reg_trie_state *)
|
|
PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
|
|
sizeof(reg_trie_state) );
|
|
next_alloc = trie->uniquecharcount + 1;
|
|
|
|
|
|
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
|
|
|
|
regnode * const noper = NEXTOPER( cur );
|
|
const U8 *uc = (U8*)STRING( noper );
|
|
const U8 * const e = uc + STR_LEN( noper );
|
|
|
|
U32 state = 1; /* required init */
|
|
|
|
U16 charid = 0; /* sanity init */
|
|
U32 accept_state = 0; /* sanity init */
|
|
U8 *scan = (U8*)NULL; /* sanity init */
|
|
|
|
STRLEN foldlen = 0; /* required init */
|
|
U32 wordlen = 0; /* required init */
|
|
STRLEN skiplen = 0;
|
|
U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
|
|
|
|
|
|
if ( OP(noper) != NOTHING ) {
|
|
for ( ; uc < e ; uc += len ) {
|
|
|
|
TRIE_READ_CHAR;
|
|
|
|
if ( uvc < 256 ) {
|
|
charid = trie->charmap[ uvc ];
|
|
} else {
|
|
SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
|
|
charid = svpp ? (U16)SvIV(*svpp) : 0;
|
|
}
|
|
if ( charid ) {
|
|
charid--;
|
|
if ( !trie->trans[ state + charid ].next ) {
|
|
trie->trans[ state + charid ].next = next_alloc;
|
|
trie->trans[ state ].check++;
|
|
prev_states[TRIE_NODENUM(next_alloc)]
|
|
= TRIE_NODENUM(state);
|
|
next_alloc += trie->uniquecharcount;
|
|
}
|
|
state = trie->trans[ state + charid ].next;
|
|
} else {
|
|
Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
|
|
}
|
|
/* charid is now 0 if we dont know the char read, or nonzero if we do */
|
|
}
|
|
}
|
|
accept_state = TRIE_NODENUM( state );
|
|
TRIE_HANDLE_WORD(accept_state);
|
|
|
|
} /* end second pass */
|
|
|
|
/* and now dump it out before we compress it */
|
|
DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
|
|
revcharmap,
|
|
next_alloc, depth+1));
|
|
|
|
{
|
|
/*
|
|
* Inplace compress the table.*
|
|
|
|
For sparse data sets the table constructed by the trie algorithm will
|
|
be mostly 0/FAIL transitions or to put it another way mostly empty.
|
|
(Note that leaf nodes will not contain any transitions.)
|
|
|
|
This algorithm compresses the tables by eliminating most such
|
|
transitions, at the cost of a modest bit of extra work during lookup:
|
|
|
|
- Each states[] entry contains a .base field which indicates the
|
|
index in the state[] array wheres its transition data is stored.
|
|
|
|
- If .base is 0 there are no valid transitions from that node.
|
|
|
|
- If .base is nonzero then charid is added to it to find an entry in
|
|
the trans array.
|
|
|
|
-If trans[states[state].base+charid].check!=state then the
|
|
transition is taken to be a 0/Fail transition. Thus if there are fail
|
|
transitions at the front of the node then the .base offset will point
|
|
somewhere inside the previous nodes data (or maybe even into a node
|
|
even earlier), but the .check field determines if the transition is
|
|
valid.
|
|
|
|
XXX - wrong maybe?
|
|
The following process inplace converts the table to the compressed
|
|
table: We first do not compress the root node 1,and mark all its
|
|
.check pointers as 1 and set its .base pointer as 1 as well. This
|
|
allows us to do a DFA construction from the compressed table later,
|
|
and ensures that any .base pointers we calculate later are greater
|
|
than 0.
|
|
|
|
- We set 'pos' to indicate the first entry of the second node.
|
|
|
|
- We then iterate over the columns of the node, finding the first and
|
|
last used entry at l and m. We then copy l..m into pos..(pos+m-l),
|
|
and set the .check pointers accordingly, and advance pos
|
|
appropriately and repreat for the next node. Note that when we copy
|
|
the next pointers we have to convert them from the original
|
|
NODEIDX form to NODENUM form as the former is not valid post
|
|
compression.
|
|
|
|
- If a node has no transitions used we mark its base as 0 and do not
|
|
advance the pos pointer.
|
|
|
|
- If a node only has one transition we use a second pointer into the
|
|
structure to fill in allocated fail transitions from other states.
|
|
This pointer is independent of the main pointer and scans forward
|
|
looking for null transitions that are allocated to a state. When it
|
|
finds one it writes the single transition into the "hole". If the
|
|
pointer doesnt find one the single transition is appended as normal.
|
|
|
|
- Once compressed we can Renew/realloc the structures to release the
|
|
excess space.
|
|
|
|
See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
|
|
specifically Fig 3.47 and the associated pseudocode.
|
|
|
|
demq
|
|
*/
|
|
const U32 laststate = TRIE_NODENUM( next_alloc );
|
|
U32 state, charid;
|
|
U32 pos = 0, zp=0;
|
|
trie->statecount = laststate;
|
|
|
|
for ( state = 1 ; state < laststate ; state++ ) {
|
|
U8 flag = 0;
|
|
const U32 stateidx = TRIE_NODEIDX( state );
|
|
const U32 o_used = trie->trans[ stateidx ].check;
|
|
U32 used = trie->trans[ stateidx ].check;
|
|
trie->trans[ stateidx ].check = 0;
|
|
|
|
for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
|
|
if ( flag || trie->trans[ stateidx + charid ].next ) {
|
|
if ( trie->trans[ stateidx + charid ].next ) {
|
|
if (o_used == 1) {
|
|
for ( ; zp < pos ; zp++ ) {
|
|
if ( ! trie->trans[ zp ].next ) {
|
|
break;
|
|
}
|
|
}
|
|
trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
|
|
trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
|
|
trie->trans[ zp ].check = state;
|
|
if ( ++zp > pos ) pos = zp;
|
|
break;
|
|
}
|
|
used--;
|
|
}
|
|
if ( !flag ) {
|
|
flag = 1;
|
|
trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
|
|
}
|
|
trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
|
|
trie->trans[ pos ].check = state;
|
|
pos++;
|
|
}
|
|
}
|
|
}
|
|
trie->lasttrans = pos + 1;
|
|
trie->states = (reg_trie_state *)
|
|
PerlMemShared_realloc( trie->states, laststate
|
|
* sizeof(reg_trie_state) );
|
|
DEBUG_TRIE_COMPILE_MORE_r(
|
|
PerlIO_printf( Perl_debug_log,
|
|
"%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
|
|
(int)depth * 2 + 2,"",
|
|
(int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
|
|
(IV)next_alloc,
|
|
(IV)pos,
|
|
( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
|
|
);
|
|
|
|
} /* end table compress */
|
|
}
|
|
DEBUG_TRIE_COMPILE_MORE_r(
|
|
PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
|
|
(int)depth * 2 + 2, "",
|
|
(UV)trie->statecount,
|
|
(UV)trie->lasttrans)
|
|
);
|
|
/* resize the trans array to remove unused space */
|
|
trie->trans = (reg_trie_trans *)
|
|
PerlMemShared_realloc( trie->trans, trie->lasttrans
|
|
* sizeof(reg_trie_trans) );
|
|
|
|
{ /* Modify the program and insert the new TRIE node */
|
|
U8 nodetype =(U8)(flags & 0xFF);
|
|
char *str=NULL;
|
|
|
|
#ifdef DEBUGGING
|
|
regnode *optimize = NULL;
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
|
|
U32 mjd_offset = 0;
|
|
U32 mjd_nodelen = 0;
|
|
#endif /* RE_TRACK_PATTERN_OFFSETS */
|
|
#endif /* DEBUGGING */
|
|
/*
|
|
This means we convert either the first branch or the first Exact,
|
|
depending on whether the thing following (in 'last') is a branch
|
|
or not and whther first is the startbranch (ie is it a sub part of
|
|
the alternation or is it the whole thing.)
|
|
Assuming its a sub part we convert the EXACT otherwise we convert
|
|
the whole branch sequence, including the first.
|
|
*/
|
|
/* Find the node we are going to overwrite */
|
|
if ( first != startbranch || OP( last ) == BRANCH ) {
|
|
/* branch sub-chain */
|
|
NEXT_OFF( first ) = (U16)(last - first);
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
DEBUG_r({
|
|
mjd_offset= Node_Offset((convert));
|
|
mjd_nodelen= Node_Length((convert));
|
|
});
|
|
#endif
|
|
/* whole branch chain */
|
|
}
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
else {
|
|
DEBUG_r({
|
|
const regnode *nop = NEXTOPER( convert );
|
|
mjd_offset= Node_Offset((nop));
|
|
mjd_nodelen= Node_Length((nop));
|
|
});
|
|
}
|
|
DEBUG_OPTIMISE_r(
|
|
PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
|
|
(int)depth * 2 + 2, "",
|
|
(UV)mjd_offset, (UV)mjd_nodelen)
|
|
);
|
|
#endif
|
|
/* But first we check to see if there is a common prefix we can
|
|
split out as an EXACT and put in front of the TRIE node. */
|
|
trie->startstate= 1;
|
|
if ( trie->bitmap && !widecharmap && !trie->jump ) {
|
|
U32 state;
|
|
for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
|
|
U32 ofs = 0;
|
|
I32 idx = -1;
|
|
U32 count = 0;
|
|
const U32 base = trie->states[ state ].trans.base;
|
|
|
|
if ( trie->states[state].wordnum )
|
|
count = 1;
|
|
|
|
for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
|
|
if ( ( base + ofs >= trie->uniquecharcount ) &&
|
|
( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
|
|
trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
|
|
{
|
|
if ( ++count > 1 ) {
|
|
SV **tmp = av_fetch( revcharmap, ofs, 0);
|
|
const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
|
|
if ( state == 1 ) break;
|
|
if ( count == 2 ) {
|
|
Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
|
|
DEBUG_OPTIMISE_r(
|
|
PerlIO_printf(Perl_debug_log,
|
|
"%*sNew Start State=%"UVuf" Class: [",
|
|
(int)depth * 2 + 2, "",
|
|
(UV)state));
|
|
if (idx >= 0) {
|
|
SV ** const tmp = av_fetch( revcharmap, idx, 0);
|
|
const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
|
|
|
|
TRIE_BITMAP_SET(trie,*ch);
|
|
if ( folder )
|
|
TRIE_BITMAP_SET(trie, folder[ *ch ]);
|
|
DEBUG_OPTIMISE_r(
|
|
PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
|
|
);
|
|
}
|
|
}
|
|
TRIE_BITMAP_SET(trie,*ch);
|
|
if ( folder )
|
|
TRIE_BITMAP_SET(trie,folder[ *ch ]);
|
|
DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
|
|
}
|
|
idx = ofs;
|
|
}
|
|
}
|
|
if ( count == 1 ) {
|
|
SV **tmp = av_fetch( revcharmap, idx, 0);
|
|
STRLEN len;
|
|
char *ch = SvPV( *tmp, len );
|
|
DEBUG_OPTIMISE_r({
|
|
SV *sv=sv_newmortal();
|
|
PerlIO_printf( Perl_debug_log,
|
|
"%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
|
|
(int)depth * 2 + 2, "",
|
|
(UV)state, (UV)idx,
|
|
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
|
|
PL_colors[0], PL_colors[1],
|
|
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
|
|
PERL_PV_ESCAPE_FIRSTCHAR
|
|
)
|
|
);
|
|
});
|
|
if ( state==1 ) {
|
|
OP( convert ) = nodetype;
|
|
str=STRING(convert);
|
|
STR_LEN(convert)=0;
|
|
}
|
|
STR_LEN(convert) += len;
|
|
while (len--)
|
|
*str++ = *ch++;
|
|
} else {
|
|
#ifdef DEBUGGING
|
|
if (state>1)
|
|
DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
trie->prefixlen = (state-1);
|
|
if (str) {
|
|
regnode *n = convert+NODE_SZ_STR(convert);
|
|
NEXT_OFF(convert) = NODE_SZ_STR(convert);
|
|
trie->startstate = state;
|
|
trie->minlen -= (state - 1);
|
|
trie->maxlen -= (state - 1);
|
|
#ifdef DEBUGGING
|
|
/* At least the UNICOS C compiler choked on this
|
|
* being argument to DEBUG_r(), so let's just have
|
|
* it right here. */
|
|
if (
|
|
#ifdef PERL_EXT_RE_BUILD
|
|
1
|
|
#else
|
|
DEBUG_r_TEST
|
|
#endif
|
|
) {
|
|
regnode *fix = convert;
|
|
U32 word = trie->wordcount;
|
|
mjd_nodelen++;
|
|
Set_Node_Offset_Length(convert, mjd_offset, state - 1);
|
|
while( ++fix < n ) {
|
|
Set_Node_Offset_Length(fix, 0, 0);
|
|
}
|
|
while (word--) {
|
|
SV ** const tmp = av_fetch( trie_words, word, 0 );
|
|
if (tmp) {
|
|
if ( STR_LEN(convert) <= SvCUR(*tmp) )
|
|
sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
|
|
else
|
|
sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (trie->maxlen) {
|
|
convert = n;
|
|
} else {
|
|
NEXT_OFF(convert) = (U16)(tail - convert);
|
|
DEBUG_r(optimize= n);
|
|
}
|
|
}
|
|
}
|
|
if (!jumper)
|
|
jumper = last;
|
|
if ( trie->maxlen ) {
|
|
NEXT_OFF( convert ) = (U16)(tail - convert);
|
|
ARG_SET( convert, data_slot );
|
|
/* Store the offset to the first unabsorbed branch in
|
|
jump[0], which is otherwise unused by the jump logic.
|
|
We use this when dumping a trie and during optimisation. */
|
|
if (trie->jump)
|
|
trie->jump[0] = (U16)(nextbranch - convert);
|
|
|
|
/* If the start state is not accepting (meaning there is no empty string/NOTHING)
|
|
* and there is a bitmap
|
|
* and the first "jump target" node we found leaves enough room
|
|
* then convert the TRIE node into a TRIEC node, with the bitmap
|
|
* embedded inline in the opcode - this is hypothetically faster.
|
|
*/
|
|
if ( !trie->states[trie->startstate].wordnum
|
|
&& trie->bitmap
|
|
&& ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
|
|
{
|
|
OP( convert ) = TRIEC;
|
|
Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
|
|
PerlMemShared_free(trie->bitmap);
|
|
trie->bitmap= NULL;
|
|
} else
|
|
OP( convert ) = TRIE;
|
|
|
|
/* store the type in the flags */
|
|
convert->flags = nodetype;
|
|
DEBUG_r({
|
|
optimize = convert
|
|
+ NODE_STEP_REGNODE
|
|
+ regarglen[ OP( convert ) ];
|
|
});
|
|
/* XXX We really should free up the resource in trie now,
|
|
as we won't use them - (which resources?) dmq */
|
|
}
|
|
/* needed for dumping*/
|
|
DEBUG_r(if (optimize) {
|
|
regnode *opt = convert;
|
|
|
|
while ( ++opt < optimize) {
|
|
Set_Node_Offset_Length(opt,0,0);
|
|
}
|
|
/*
|
|
Try to clean up some of the debris left after the
|
|
optimisation.
|
|
*/
|
|
while( optimize < jumper ) {
|
|
mjd_nodelen += Node_Length((optimize));
|
|
OP( optimize ) = OPTIMIZED;
|
|
Set_Node_Offset_Length(optimize,0,0);
|
|
optimize++;
|
|
}
|
|
Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
|
|
});
|
|
} /* end node insert */
|
|
|
|
/* Finish populating the prev field of the wordinfo array. Walk back
|
|
* from each accept state until we find another accept state, and if
|
|
* so, point the first word's .prev field at the second word. If the
|
|
* second already has a .prev field set, stop now. This will be the
|
|
* case either if we've already processed that word's accept state,
|
|
* or that state had multiple words, and the overspill words were
|
|
* already linked up earlier.
|
|
*/
|
|
{
|
|
U16 word;
|
|
U32 state;
|
|
U16 prev;
|
|
|
|
for (word=1; word <= trie->wordcount; word++) {
|
|
prev = 0;
|
|
if (trie->wordinfo[word].prev)
|
|
continue;
|
|
state = trie->wordinfo[word].accept;
|
|
while (state) {
|
|
state = prev_states[state];
|
|
if (!state)
|
|
break;
|
|
prev = trie->states[state].wordnum;
|
|
if (prev)
|
|
break;
|
|
}
|
|
trie->wordinfo[word].prev = prev;
|
|
}
|
|
Safefree(prev_states);
|
|
}
|
|
|
|
|
|
/* and now dump out the compressed format */
|
|
DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
|
|
|
|
RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
|
|
#ifdef DEBUGGING
|
|
RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
|
|
RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
|
|
#else
|
|
SvREFCNT_dec(revcharmap);
|
|
#endif
|
|
return trie->jump
|
|
? MADE_JUMP_TRIE
|
|
: trie->startstate>1
|
|
? MADE_EXACT_TRIE
|
|
: MADE_TRIE;
|
|
}
|
|
|
|
STATIC void
|
|
S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
|
|
{
|
|
/* The Trie is constructed and compressed now so we can build a fail array if it's needed
|
|
|
|
This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
|
|
"Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
|
|
ISBN 0-201-10088-6
|
|
|
|
We find the fail state for each state in the trie, this state is the longest proper
|
|
suffix of the current state's 'word' that is also a proper prefix of another word in our
|
|
trie. State 1 represents the word '' and is thus the default fail state. This allows
|
|
the DFA not to have to restart after its tried and failed a word at a given point, it
|
|
simply continues as though it had been matching the other word in the first place.
|
|
Consider
|
|
'abcdgu'=~/abcdefg|cdgu/
|
|
When we get to 'd' we are still matching the first word, we would encounter 'g' which would
|
|
fail, which would bring us to the state representing 'd' in the second word where we would
|
|
try 'g' and succeed, proceeding to match 'cdgu'.
|
|
*/
|
|
/* add a fail transition */
|
|
const U32 trie_offset = ARG(source);
|
|
reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
|
|
U32 *q;
|
|
const U32 ucharcount = trie->uniquecharcount;
|
|
const U32 numstates = trie->statecount;
|
|
const U32 ubound = trie->lasttrans + ucharcount;
|
|
U32 q_read = 0;
|
|
U32 q_write = 0;
|
|
U32 charid;
|
|
U32 base = trie->states[ 1 ].trans.base;
|
|
U32 *fail;
|
|
reg_ac_data *aho;
|
|
const U32 data_slot = add_data( pRExC_state, 1, "T" );
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
|
|
#ifndef DEBUGGING
|
|
PERL_UNUSED_ARG(depth);
|
|
#endif
|
|
|
|
|
|
ARG_SET( stclass, data_slot );
|
|
aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
|
|
RExC_rxi->data->data[ data_slot ] = (void*)aho;
|
|
aho->trie=trie_offset;
|
|
aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
|
|
Copy( trie->states, aho->states, numstates, reg_trie_state );
|
|
Newxz( q, numstates, U32);
|
|
aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
|
|
aho->refcount = 1;
|
|
fail = aho->fail;
|
|
/* initialize fail[0..1] to be 1 so that we always have
|
|
a valid final fail state */
|
|
fail[ 0 ] = fail[ 1 ] = 1;
|
|
|
|
for ( charid = 0; charid < ucharcount ; charid++ ) {
|
|
const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
|
|
if ( newstate ) {
|
|
q[ q_write ] = newstate;
|
|
/* set to point at the root */
|
|
fail[ q[ q_write++ ] ]=1;
|
|
}
|
|
}
|
|
while ( q_read < q_write) {
|
|
const U32 cur = q[ q_read++ % numstates ];
|
|
base = trie->states[ cur ].trans.base;
|
|
|
|
for ( charid = 0 ; charid < ucharcount ; charid++ ) {
|
|
const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
|
|
if (ch_state) {
|
|
U32 fail_state = cur;
|
|
U32 fail_base;
|
|
do {
|
|
fail_state = fail[ fail_state ];
|
|
fail_base = aho->states[ fail_state ].trans.base;
|
|
} while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
|
|
|
|
fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
|
|
fail[ ch_state ] = fail_state;
|
|
if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
|
|
{
|
|
aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
|
|
}
|
|
q[ q_write++ % numstates] = ch_state;
|
|
}
|
|
}
|
|
}
|
|
/* restore fail[0..1] to 0 so that we "fall out" of the AC loop
|
|
when we fail in state 1, this allows us to use the
|
|
charclass scan to find a valid start char. This is based on the principle
|
|
that theres a good chance the string being searched contains lots of stuff
|
|
that cant be a start char.
|
|
*/
|
|
fail[ 0 ] = fail[ 1 ] = 0;
|
|
DEBUG_TRIE_COMPILE_r({
|
|
PerlIO_printf(Perl_debug_log,
|
|
"%*sStclass Failtable (%"UVuf" states): 0",
|
|
(int)(depth * 2), "", (UV)numstates
|
|
);
|
|
for( q_read=1; q_read<numstates; q_read++ ) {
|
|
PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
|
|
}
|
|
PerlIO_printf(Perl_debug_log, "\n");
|
|
});
|
|
Safefree(q);
|
|
/*RExC_seen |= REG_SEEN_TRIEDFA;*/
|
|
}
|
|
|
|
|
|
/*
|
|
* There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
|
|
* These need to be revisited when a newer toolchain becomes available.
|
|
*/
|
|
#if defined(__sparc64__) && defined(__GNUC__)
|
|
# if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
|
|
# undef SPARC64_GCC_WORKAROUND
|
|
# define SPARC64_GCC_WORKAROUND 1
|
|
# endif
|
|
#endif
|
|
|
|
#define DEBUG_PEEP(str,scan,depth) \
|
|
DEBUG_OPTIMISE_r({if (scan){ \
|
|
SV * const mysv=sv_newmortal(); \
|
|
regnode *Next = regnext(scan); \
|
|
regprop(RExC_rx, mysv, scan); \
|
|
PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
|
|
(int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
|
|
Next ? (REG_NODE_NUM(Next)) : 0 ); \
|
|
}});
|
|
|
|
|
|
/* The below joins as many adjacent EXACTish nodes as possible into a single
|
|
* one, and looks for problematic sequences of characters whose folds vs.
|
|
* non-folds have sufficiently different lengths, that the optimizer would be
|
|
* fooled into rejecting legitimate matches of them, and the trie construction
|
|
* code can't cope with them. The joining is only done if:
|
|
* 1) there is room in the current conglomerated node to entirely contain the
|
|
* next one.
|
|
* 2) they are the exact same node type
|
|
*
|
|
* The adjacent nodes actually may be separated by NOTHING kind nodes, and
|
|
* these get optimized out
|
|
*
|
|
* If there are problematic code sequences, *min_subtract is set to the delta
|
|
* that the minimum size of the node can be less than its actual size. And,
|
|
* the node type of the result is changed to reflect that it contains these
|
|
* sequences.
|
|
*
|
|
* And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
|
|
* and contains LATIN SMALL LETTER SHARP S
|
|
*
|
|
* This is as good a place as any to discuss the design of handling these
|
|
* problematic sequences. It's been wrong in Perl for a very long time. There
|
|
* are three code points in Unicode whose folded lengths differ so much from
|
|
* the un-folded lengths that it causes problems for the optimizer and trie
|
|
* construction. Why only these are problematic, and not others where lengths
|
|
* also differ is something I (khw) do not understand. New versions of Unicode
|
|
* might add more such code points. Hopefully the logic in fold_grind.t that
|
|
* figures out what to test (in part by verifying that each size-combination
|
|
* gets tested) will catch any that do come along, so they can be added to the
|
|
* special handling below. The chances of new ones are actually rather small,
|
|
* as most, if not all, of the world's scripts that have casefolding have
|
|
* already been encoded by Unicode. Also, a number of Unicode's decisions were
|
|
* made to allow compatibility with pre-existing standards, and almost all of
|
|
* those have already been dealt with. These would otherwise be the most
|
|
* likely candidates for generating further tricky sequences. In other words,
|
|
* Unicode by itself is unlikely to add new ones unless it is for compatibility
|
|
* with pre-existing standards, and there aren't many of those left.
|
|
*
|
|
* The previous designs for dealing with these involved assigning a special
|
|
* node for them. This approach doesn't work, as evidenced by this example:
|
|
* "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
|
|
* Both these fold to "sss", but if the pattern is parsed to create a node of
|
|
* that would match just the \xDF, it won't be able to handle the case where a
|
|
* successful match would have to cross the node's boundary. The new approach
|
|
* that hopefully generally solves the problem generates an EXACTFU_SS node
|
|
* that is "sss".
|
|
*
|
|
* There are a number of components to the approach (a lot of work for just
|
|
* three code points!):
|
|
* 1) This routine examines each EXACTFish node that could contain the
|
|
* problematic sequences. It returns in *min_subtract how much to
|
|
* subtract from the the actual length of the string to get a real minimum
|
|
* for one that could match it. This number is usually 0 except for the
|
|
* problematic sequences. This delta is used by the caller to adjust the
|
|
* min length of the match, and the delta between min and max, so that the
|
|
* optimizer doesn't reject these possibilities based on size constraints.
|
|
* 2) These sequences are not currently correctly handled by the trie code
|
|
* either, so it changes the joined node type to ops that are not handled
|
|
* by trie's, those new ops being EXACTFU_SS and EXACTFU_TRICKYFOLD.
|
|
* 3) This is sufficient for the two Greek sequences (described below), but
|
|
* the one involving the Sharp s (\xDF) needs more. The node type
|
|
* EXACTFU_SS is used for an EXACTFU node that contains at least one "ss"
|
|
* sequence in it. For non-UTF-8 patterns and strings, this is the only
|
|
* case where there is a possible fold length change. That means that a
|
|
* regular EXACTFU node without UTF-8 involvement doesn't have to concern
|
|
* itself with length changes, and so can be processed faster. regexec.c
|
|
* takes advantage of this. Generally, an EXACTFish node that is in UTF-8
|
|
* is pre-folded by regcomp.c. This saves effort in regex matching.
|
|
* However, probably mostly for historical reasons, the pre-folding isn't
|
|
* done for non-UTF8 patterns (and it can't be for EXACTF and EXACTFL
|
|
* nodes, as what they fold to isn't known until runtime.) The fold
|
|
* possibilities for the non-UTF8 patterns are quite simple, except for
|
|
* the sharp s. All the ones that don't involve a UTF-8 target string
|
|
* are members of a fold-pair, and arrays are set up for all of them
|
|
* that quickly find the other member of the pair. It might actually
|
|
* be faster to pre-fold these, but it isn't currently done, except for
|
|
* the sharp s. Code elsewhere in this file makes sure that it gets
|
|
* folded to 'ss', even if the pattern isn't UTF-8. This avoids the
|
|
* issues described in the next item.
|
|
* 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
|
|
* 'ss' or not is not knowable at compile time. It will match iff the
|
|
* target string is in UTF-8, unlike the EXACTFU nodes, where it always
|
|
* matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
|
|
* it can't be folded to "ss" at compile time, unlike EXACTFU does as
|
|
* described in item 3). An assumption that the optimizer part of
|
|
* regexec.c (probably unwittingly) makes is that a character in the
|
|
* pattern corresponds to at most a single character in the target string.
|
|
* (And I do mean character, and not byte here, unlike other parts of the
|
|
* documentation that have never been updated to account for multibyte
|
|
* Unicode.) This assumption is wrong only in this case, as all other
|
|
* cases are either 1-1 folds when no UTF-8 is involved; or is true by
|
|
* virtue of having this file pre-fold UTF-8 patterns. I'm
|
|
* reluctant to try to change this assumption, so instead the code punts.
|
|
* This routine examines EXACTF nodes for the sharp s, and returns a
|
|
* boolean indicating whether or not the node is an EXACTF node that
|
|
* contains a sharp s. When it is true, the caller sets a flag that later
|
|
* causes the optimizer in this file to not set values for the floating
|
|
* and fixed string lengths, and thus avoids the optimizer code in
|
|
* regexec.c that makes the invalid assumption. Thus, there is no
|
|
* optimization based on string lengths for EXACTF nodes that contain the
|
|
* sharp s. This only happens for /id rules (which means the pattern
|
|
* isn't in UTF-8).
|
|
*/
|
|
|
|
#define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
|
|
if (PL_regkind[OP(scan)] == EXACT) \
|
|
join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
|
|
|
|
STATIC U32
|
|
S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
|
|
/* Merge several consecutive EXACTish nodes into one. */
|
|
regnode *n = regnext(scan);
|
|
U32 stringok = 1;
|
|
regnode *next = scan + NODE_SZ_STR(scan);
|
|
U32 merged = 0;
|
|
U32 stopnow = 0;
|
|
#ifdef DEBUGGING
|
|
regnode *stop = scan;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
#else
|
|
PERL_UNUSED_ARG(depth);
|
|
#endif
|
|
|
|
PERL_ARGS_ASSERT_JOIN_EXACT;
|
|
#ifndef EXPERIMENTAL_INPLACESCAN
|
|
PERL_UNUSED_ARG(flags);
|
|
PERL_UNUSED_ARG(val);
|
|
#endif
|
|
DEBUG_PEEP("join",scan,depth);
|
|
|
|
/* Look through the subsequent nodes in the chain. Skip NOTHING, merge
|
|
* EXACT ones that are mergeable to the current one. */
|
|
while (n
|
|
&& (PL_regkind[OP(n)] == NOTHING
|
|
|| (stringok && OP(n) == OP(scan)))
|
|
&& NEXT_OFF(n)
|
|
&& NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
|
|
{
|
|
|
|
if (OP(n) == TAIL || n > next)
|
|
stringok = 0;
|
|
if (PL_regkind[OP(n)] == NOTHING) {
|
|
DEBUG_PEEP("skip:",n,depth);
|
|
NEXT_OFF(scan) += NEXT_OFF(n);
|
|
next = n + NODE_STEP_REGNODE;
|
|
#ifdef DEBUGGING
|
|
if (stringok)
|
|
stop = n;
|
|
#endif
|
|
n = regnext(n);
|
|
}
|
|
else if (stringok) {
|
|
const unsigned int oldl = STR_LEN(scan);
|
|
regnode * const nnext = regnext(n);
|
|
|
|
if (oldl + STR_LEN(n) > U8_MAX)
|
|
break;
|
|
|
|
DEBUG_PEEP("merg",n,depth);
|
|
merged++;
|
|
|
|
NEXT_OFF(scan) += NEXT_OFF(n);
|
|
STR_LEN(scan) += STR_LEN(n);
|
|
next = n + NODE_SZ_STR(n);
|
|
/* Now we can overwrite *n : */
|
|
Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
|
|
#ifdef DEBUGGING
|
|
stop = next - 1;
|
|
#endif
|
|
n = nnext;
|
|
if (stopnow) break;
|
|
}
|
|
|
|
#ifdef EXPERIMENTAL_INPLACESCAN
|
|
if (flags && !NEXT_OFF(n)) {
|
|
DEBUG_PEEP("atch", val, depth);
|
|
if (reg_off_by_arg[OP(n)]) {
|
|
ARG_SET(n, val - n);
|
|
}
|
|
else {
|
|
NEXT_OFF(n) = val - n;
|
|
}
|
|
stopnow = 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
*min_subtract = 0;
|
|
*has_exactf_sharp_s = FALSE;
|
|
|
|
/* Here, all the adjacent mergeable EXACTish nodes have been merged. We
|
|
* can now analyze for sequences of problematic code points. (Prior to
|
|
* this final joining, sequences could have been split over boundaries, and
|
|
* hence missed). The sequences only happen in folding, hence for any
|
|
* non-EXACT EXACTish node */
|
|
if (OP(scan) != EXACT) {
|
|
U8 *s;
|
|
U8 * s0 = (U8*) STRING(scan);
|
|
U8 * const s_end = s0 + STR_LEN(scan);
|
|
|
|
/* The below is perhaps overboard, but this allows us to save a test
|
|
* each time through the loop at the expense of a mask. This is
|
|
* because on both EBCDIC and ASCII machines, 'S' and 's' differ by a
|
|
* single bit. On ASCII they are 32 apart; on EBCDIC, they are 64.
|
|
* This uses an exclusive 'or' to find that bit and then inverts it to
|
|
* form a mask, with just a single 0, in the bit position where 'S' and
|
|
* 's' differ. */
|
|
const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
|
|
const U8 s_masked = 's' & S_or_s_mask;
|
|
|
|
/* One pass is made over the node's string looking for all the
|
|
* possibilities. to avoid some tests in the loop, there are two main
|
|
* cases, for UTF-8 patterns (which can't have EXACTF nodes) and
|
|
* non-UTF-8 */
|
|
if (UTF) {
|
|
|
|
/* There are two problematic Greek code points in Unicode
|
|
* casefolding
|
|
*
|
|
* U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
|
|
* U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
|
|
*
|
|
* which casefold to
|
|
*
|
|
* Unicode UTF-8
|
|
*
|
|
* U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
|
|
* U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
|
|
*
|
|
* This means that in case-insensitive matching (or "loose
|
|
* matching", as Unicode calls it), an EXACTF of length six (the
|
|
* UTF-8 encoded byte length of the above casefolded versions) can
|
|
* match a target string of length two (the byte length of UTF-8
|
|
* encoded U+0390 or U+03B0). This would rather mess up the
|
|
* minimum length computation. (there are other code points that
|
|
* also fold to these two sequences, but the delta is smaller)
|
|
*
|
|
* If these sequences are found, the minimum length is decreased by
|
|
* four (six minus two).
|
|
*
|
|
* Similarly, 'ss' may match the single char and byte LATIN SMALL
|
|
* LETTER SHARP S. We decrease the min length by 1 for each
|
|
* occurrence of 'ss' found */
|
|
|
|
#ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
|
|
# define U390_first_byte 0xb4
|
|
const U8 U390_tail[] = "\x68\xaf\x49\xaf\x42";
|
|
# define U3B0_first_byte 0xb5
|
|
const U8 U3B0_tail[] = "\x46\xaf\x49\xaf\x42";
|
|
#else
|
|
# define U390_first_byte 0xce
|
|
const U8 U390_tail[] = "\xb9\xcc\x88\xcc\x81";
|
|
# define U3B0_first_byte 0xcf
|
|
const U8 U3B0_tail[] = "\x85\xcc\x88\xcc\x81";
|
|
#endif
|
|
const U8 len = sizeof(U390_tail); /* (-1 for NUL; +1 for 1st byte;
|
|
yields a net of 0 */
|
|
/* Examine the string for one of the problematic sequences */
|
|
for (s = s0;
|
|
s < s_end - 1; /* Can stop 1 before the end, as minimum length
|
|
* sequence we are looking for is 2 */
|
|
s += UTF8SKIP(s))
|
|
{
|
|
|
|
/* Look for the first byte in each problematic sequence */
|
|
switch (*s) {
|
|
/* We don't have to worry about other things that fold to
|
|
* 's' (such as the long s, U+017F), as all above-latin1
|
|
* code points have been pre-folded */
|
|
case 's':
|
|
case 'S':
|
|
|
|
/* Current character is an 's' or 'S'. If next one is
|
|
* as well, we have the dreaded sequence */
|
|
if (((*(s+1) & S_or_s_mask) == s_masked)
|
|
/* These two node types don't have special handling
|
|
* for 'ss' */
|
|
&& OP(scan) != EXACTFL && OP(scan) != EXACTFA)
|
|
{
|
|
*min_subtract += 1;
|
|
OP(scan) = EXACTFU_SS;
|
|
s++; /* No need to look at this character again */
|
|
}
|
|
break;
|
|
|
|
case U390_first_byte:
|
|
if (s_end - s >= len
|
|
|
|
/* The 1's are because are skipping comparing the
|
|
* first byte */
|
|
&& memEQ(s + 1, U390_tail, len - 1))
|
|
{
|
|
goto greek_sequence;
|
|
}
|
|
break;
|
|
|
|
case U3B0_first_byte:
|
|
if (! (s_end - s >= len
|
|
&& memEQ(s + 1, U3B0_tail, len - 1)))
|
|
{
|
|
break;
|
|
}
|
|
greek_sequence:
|
|
*min_subtract += 4;
|
|
|
|
/* This can't currently be handled by trie's, so change
|
|
* the node type to indicate this. If EXACTFA and
|
|
* EXACTFL were ever to be handled by trie's, this
|
|
* would have to be changed. If this node has already
|
|
* been changed to EXACTFU_SS in this loop, leave it as
|
|
* is. (I (khw) think it doesn't matter in regexec.c
|
|
* for UTF patterns, but no need to change it */
|
|
if (OP(scan) == EXACTFU) {
|
|
OP(scan) = EXACTFU_TRICKYFOLD;
|
|
}
|
|
s += 6; /* We already know what this sequence is. Skip
|
|
the rest of it */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
|
|
|
|
/* Here, the pattern is not UTF-8. We need to look only for the
|
|
* 'ss' sequence, and in the EXACTF case, the sharp s, which can be
|
|
* in the final position. Otherwise we can stop looking 1 byte
|
|
* earlier because have to find both the first and second 's' */
|
|
const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
|
|
|
|
for (s = s0; s < upper; s++) {
|
|
switch (*s) {
|
|
case 'S':
|
|
case 's':
|
|
if (s_end - s > 1
|
|
&& ((*(s+1) & S_or_s_mask) == s_masked))
|
|
{
|
|
*min_subtract += 1;
|
|
|
|
/* EXACTF nodes need to know that the minimum
|
|
* length changed so that a sharp s in the string
|
|
* can match this ss in the pattern, but they
|
|
* remain EXACTF nodes, as they are not trie'able,
|
|
* so don't have to invent a new node type to
|
|
* exclude them from the trie code */
|
|
if (OP(scan) != EXACTF) {
|
|
OP(scan) = EXACTFU_SS;
|
|
}
|
|
s++;
|
|
}
|
|
break;
|
|
case LATIN_SMALL_LETTER_SHARP_S:
|
|
if (OP(scan) == EXACTF) {
|
|
*has_exactf_sharp_s = TRUE;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUGGING
|
|
/* Allow dumping but overwriting the collection of skipped
|
|
* ops and/or strings with fake optimized ops */
|
|
n = scan + NODE_SZ_STR(scan);
|
|
while (n <= stop) {
|
|
OP(n) = OPTIMIZED;
|
|
FLAGS(n) = 0;
|
|
NEXT_OFF(n) = 0;
|
|
n++;
|
|
}
|
|
#endif
|
|
DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
|
|
return stopnow;
|
|
}
|
|
|
|
/* REx optimizer. Converts nodes into quicker variants "in place".
|
|
Finds fixed substrings. */
|
|
|
|
/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
|
|
to the position after last scanned or to NULL. */
|
|
|
|
#define INIT_AND_WITHP \
|
|
assert(!and_withp); \
|
|
Newx(and_withp,1,struct regnode_charclass_class); \
|
|
SAVEFREEPV(and_withp)
|
|
|
|
/* this is a chain of data about sub patterns we are processing that
|
|
need to be handled separately/specially in study_chunk. Its so
|
|
we can simulate recursion without losing state. */
|
|
struct scan_frame;
|
|
typedef struct scan_frame {
|
|
regnode *last; /* last node to process in this frame */
|
|
regnode *next; /* next node to process when last is reached */
|
|
struct scan_frame *prev; /*previous frame*/
|
|
I32 stop; /* what stopparen do we use */
|
|
} scan_frame;
|
|
|
|
|
|
#define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
|
|
|
|
#define CASE_SYNST_FNC(nAmE) \
|
|
case nAmE: \
|
|
if (flags & SCF_DO_STCLASS_AND) { \
|
|
for (value = 0; value < 256; value++) \
|
|
if (!is_ ## nAmE ## _cp(value)) \
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value); \
|
|
} \
|
|
else { \
|
|
for (value = 0; value < 256; value++) \
|
|
if (is_ ## nAmE ## _cp(value)) \
|
|
ANYOF_BITMAP_SET(data->start_class, value); \
|
|
} \
|
|
break; \
|
|
case N ## nAmE: \
|
|
if (flags & SCF_DO_STCLASS_AND) { \
|
|
for (value = 0; value < 256; value++) \
|
|
if (is_ ## nAmE ## _cp(value)) \
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value); \
|
|
} \
|
|
else { \
|
|
for (value = 0; value < 256; value++) \
|
|
if (!is_ ## nAmE ## _cp(value)) \
|
|
ANYOF_BITMAP_SET(data->start_class, value); \
|
|
} \
|
|
break
|
|
|
|
|
|
|
|
STATIC I32
|
|
S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
|
|
I32 *minlenp, I32 *deltap,
|
|
regnode *last,
|
|
scan_data_t *data,
|
|
I32 stopparen,
|
|
U8* recursed,
|
|
struct regnode_charclass_class *and_withp,
|
|
U32 flags, U32 depth)
|
|
/* scanp: Start here (read-write). */
|
|
/* deltap: Write maxlen-minlen here. */
|
|
/* last: Stop before this one. */
|
|
/* data: string data about the pattern */
|
|
/* stopparen: treat close N as END */
|
|
/* recursed: which subroutines have we recursed into */
|
|
/* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
|
|
{
|
|
dVAR;
|
|
I32 min = 0, pars = 0, code;
|
|
regnode *scan = *scanp, *next;
|
|
I32 delta = 0;
|
|
int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
|
|
int is_inf_internal = 0; /* The studied chunk is infinite */
|
|
I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
|
|
scan_data_t data_fake;
|
|
SV *re_trie_maxbuff = NULL;
|
|
regnode *first_non_open = scan;
|
|
I32 stopmin = I32_MAX;
|
|
scan_frame *frame = NULL;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_STUDY_CHUNK;
|
|
|
|
#ifdef DEBUGGING
|
|
StructCopy(&zero_scan_data, &data_fake, scan_data_t);
|
|
#endif
|
|
|
|
if ( depth == 0 ) {
|
|
while (first_non_open && OP(first_non_open) == OPEN)
|
|
first_non_open=regnext(first_non_open);
|
|
}
|
|
|
|
|
|
fake_study_recurse:
|
|
while ( scan && OP(scan) != END && scan < last ){
|
|
UV min_subtract = 0; /* How much to subtract from the minimum node
|
|
length to get a real minimum (because the
|
|
folded version may be shorter) */
|
|
bool has_exactf_sharp_s = FALSE;
|
|
/* Peephole optimizer: */
|
|
DEBUG_STUDYDATA("Peep:", data,depth);
|
|
DEBUG_PEEP("Peep",scan,depth);
|
|
|
|
/* Its not clear to khw or hv why this is done here, and not in the
|
|
* clauses that deal with EXACT nodes. khw's guess is that it's
|
|
* because of a previous design */
|
|
JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
|
|
|
|
/* Follow the next-chain of the current node and optimize
|
|
away all the NOTHINGs from it. */
|
|
if (OP(scan) != CURLYX) {
|
|
const int max = (reg_off_by_arg[OP(scan)]
|
|
? I32_MAX
|
|
/* I32 may be smaller than U16 on CRAYs! */
|
|
: (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
|
|
int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
|
|
int noff;
|
|
regnode *n = scan;
|
|
|
|
/* Skip NOTHING and LONGJMP. */
|
|
while ((n = regnext(n))
|
|
&& ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
|
|
|| ((OP(n) == LONGJMP) && (noff = ARG(n))))
|
|
&& off + noff < max)
|
|
off += noff;
|
|
if (reg_off_by_arg[OP(scan)])
|
|
ARG(scan) = off;
|
|
else
|
|
NEXT_OFF(scan) = off;
|
|
}
|
|
|
|
|
|
|
|
/* The principal pseudo-switch. Cannot be a switch, since we
|
|
look into several different things. */
|
|
if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
|
|
|| OP(scan) == IFTHEN) {
|
|
next = regnext(scan);
|
|
code = OP(scan);
|
|
/* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
|
|
|
|
if (OP(next) == code || code == IFTHEN) {
|
|
/* NOTE - There is similar code to this block below for handling
|
|
TRIE nodes on a re-study. If you change stuff here check there
|
|
too. */
|
|
I32 max1 = 0, min1 = I32_MAX, num = 0;
|
|
struct regnode_charclass_class accum;
|
|
regnode * const startbranch=scan;
|
|
|
|
if (flags & SCF_DO_SUBSTR)
|
|
SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
|
|
if (flags & SCF_DO_STCLASS)
|
|
cl_init_zero(pRExC_state, &accum);
|
|
|
|
while (OP(scan) == code) {
|
|
I32 deltanext, minnext, f = 0, fake;
|
|
struct regnode_charclass_class this_class;
|
|
|
|
num++;
|
|
data_fake.flags = 0;
|
|
if (data) {
|
|
data_fake.whilem_c = data->whilem_c;
|
|
data_fake.last_closep = data->last_closep;
|
|
}
|
|
else
|
|
data_fake.last_closep = &fake;
|
|
|
|
data_fake.pos_delta = delta;
|
|
next = regnext(scan);
|
|
scan = NEXTOPER(scan);
|
|
if (code != BRANCH)
|
|
scan = NEXTOPER(scan);
|
|
if (flags & SCF_DO_STCLASS) {
|
|
cl_init(pRExC_state, &this_class);
|
|
data_fake.start_class = &this_class;
|
|
f = SCF_DO_STCLASS_AND;
|
|
}
|
|
if (flags & SCF_WHILEM_VISITED_POS)
|
|
f |= SCF_WHILEM_VISITED_POS;
|
|
|
|
/* we suppose the run is continuous, last=next...*/
|
|
minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
|
|
next, &data_fake,
|
|
stopparen, recursed, NULL, f,depth+1);
|
|
if (min1 > minnext)
|
|
min1 = minnext;
|
|
if (max1 < minnext + deltanext)
|
|
max1 = minnext + deltanext;
|
|
if (deltanext == I32_MAX)
|
|
is_inf = is_inf_internal = 1;
|
|
scan = next;
|
|
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
|
|
pars++;
|
|
if (data_fake.flags & SCF_SEEN_ACCEPT) {
|
|
if ( stopmin > minnext)
|
|
stopmin = min + min1;
|
|
flags &= ~SCF_DO_SUBSTR;
|
|
if (data)
|
|
data->flags |= SCF_SEEN_ACCEPT;
|
|
}
|
|
if (data) {
|
|
if (data_fake.flags & SF_HAS_EVAL)
|
|
data->flags |= SF_HAS_EVAL;
|
|
data->whilem_c = data_fake.whilem_c;
|
|
}
|
|
if (flags & SCF_DO_STCLASS)
|
|
cl_or(pRExC_state, &accum, &this_class);
|
|
}
|
|
if (code == IFTHEN && num < 2) /* Empty ELSE branch */
|
|
min1 = 0;
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
data->pos_min += min1;
|
|
data->pos_delta += max1 - min1;
|
|
if (max1 != min1 || is_inf)
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
min += min1;
|
|
delta += max1 - min1;
|
|
if (flags & SCF_DO_STCLASS_OR) {
|
|
cl_or(pRExC_state, data->start_class, &accum);
|
|
if (min1) {
|
|
cl_and(data->start_class, and_withp);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
}
|
|
else if (flags & SCF_DO_STCLASS_AND) {
|
|
if (min1) {
|
|
cl_and(data->start_class, &accum);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
else {
|
|
/* Switch to OR mode: cache the old value of
|
|
* data->start_class */
|
|
INIT_AND_WITHP;
|
|
StructCopy(data->start_class, and_withp,
|
|
struct regnode_charclass_class);
|
|
flags &= ~SCF_DO_STCLASS_AND;
|
|
StructCopy(&accum, data->start_class,
|
|
struct regnode_charclass_class);
|
|
flags |= SCF_DO_STCLASS_OR;
|
|
data->start_class->flags |= ANYOF_EOS;
|
|
}
|
|
}
|
|
|
|
if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
|
|
/* demq.
|
|
|
|
Assuming this was/is a branch we are dealing with: 'scan' now
|
|
points at the item that follows the branch sequence, whatever
|
|
it is. We now start at the beginning of the sequence and look
|
|
for subsequences of
|
|
|
|
BRANCH->EXACT=>x1
|
|
BRANCH->EXACT=>x2
|
|
tail
|
|
|
|
which would be constructed from a pattern like /A|LIST|OF|WORDS/
|
|
|
|
If we can find such a subsequence we need to turn the first
|
|
element into a trie and then add the subsequent branch exact
|
|
strings to the trie.
|
|
|
|
We have two cases
|
|
|
|
1. patterns where the whole set of branches can be converted.
|
|
|
|
2. patterns where only a subset can be converted.
|
|
|
|
In case 1 we can replace the whole set with a single regop
|
|
for the trie. In case 2 we need to keep the start and end
|
|
branches so
|
|
|
|
'BRANCH EXACT; BRANCH EXACT; BRANCH X'
|
|
becomes BRANCH TRIE; BRANCH X;
|
|
|
|
There is an additional case, that being where there is a
|
|
common prefix, which gets split out into an EXACT like node
|
|
preceding the TRIE node.
|
|
|
|
If x(1..n)==tail then we can do a simple trie, if not we make
|
|
a "jump" trie, such that when we match the appropriate word
|
|
we "jump" to the appropriate tail node. Essentially we turn
|
|
a nested if into a case structure of sorts.
|
|
|
|
*/
|
|
|
|
int made=0;
|
|
if (!re_trie_maxbuff) {
|
|
re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
|
|
if (!SvIOK(re_trie_maxbuff))
|
|
sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
|
|
}
|
|
if ( SvIV(re_trie_maxbuff)>=0 ) {
|
|
regnode *cur;
|
|
regnode *first = (regnode *)NULL;
|
|
regnode *last = (regnode *)NULL;
|
|
regnode *tail = scan;
|
|
U8 trietype = 0;
|
|
U32 count=0;
|
|
|
|
#ifdef DEBUGGING
|
|
SV * const mysv = sv_newmortal(); /* for dumping */
|
|
#endif
|
|
/* var tail is used because there may be a TAIL
|
|
regop in the way. Ie, the exacts will point to the
|
|
thing following the TAIL, but the last branch will
|
|
point at the TAIL. So we advance tail. If we
|
|
have nested (?:) we may have to move through several
|
|
tails.
|
|
*/
|
|
|
|
while ( OP( tail ) == TAIL ) {
|
|
/* this is the TAIL generated by (?:) */
|
|
tail = regnext( tail );
|
|
}
|
|
|
|
|
|
DEBUG_OPTIMISE_r({
|
|
regprop(RExC_rx, mysv, tail );
|
|
PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
|
|
(int)depth * 2 + 2, "",
|
|
"Looking for TRIE'able sequences. Tail node is: ",
|
|
SvPV_nolen_const( mysv )
|
|
);
|
|
});
|
|
|
|
/*
|
|
|
|
Step through the branches
|
|
cur represents each branch,
|
|
noper is the first thing to be matched as part of that branch
|
|
noper_next is the regnext() of that node.
|
|
|
|
We normally handle a case like this /FOO[xyz]|BAR[pqr]/
|
|
via a "jump trie" but we also support building with NOJUMPTRIE,
|
|
which restricts the trie logic to structures like /FOO|BAR/.
|
|
|
|
If noper is a trieable nodetype then the branch is a possible optimization
|
|
target. If we are building under NOJUMPTRIE then we require that noper_next
|
|
is the same as scan (our current position in the regex program).
|
|
|
|
Once we have two or more consecutive such branches we can create a
|
|
trie of the EXACT's contents and stitch it in place into the program.
|
|
|
|
If the sequence represents all of the branches in the alternation we
|
|
replace the entire thing with a single TRIE node.
|
|
|
|
Otherwise when it is a subsequence we need to stitch it in place and
|
|
replace only the relevant branches. This means the first branch has
|
|
to remain as it is used by the alternation logic, and its next pointer,
|
|
and needs to be repointed at the item on the branch chain following
|
|
the last branch we have optimized away.
|
|
|
|
This could be either a BRANCH, in which case the subsequence is internal,
|
|
or it could be the item following the branch sequence in which case the
|
|
subsequence is at the end (which does not necessarily mean the first node
|
|
is the start of the alternation).
|
|
|
|
TRIE_TYPE(X) is a define which maps the optype to a trietype.
|
|
|
|
optype | trietype
|
|
----------------+-----------
|
|
NOTHING | NOTHING
|
|
EXACT | EXACT
|
|
EXACTFU | EXACTFU
|
|
EXACTFU_SS | EXACTFU
|
|
EXACTFU_TRICKYFOLD | EXACTFU
|
|
EXACTFA | 0
|
|
|
|
|
|
*/
|
|
#define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
|
|
( EXACT == (X) ) ? EXACT : \
|
|
( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
|
|
0 )
|
|
|
|
/* dont use tail as the end marker for this traverse */
|
|
for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
|
|
regnode * const noper = NEXTOPER( cur );
|
|
U8 noper_type = OP( noper );
|
|
U8 noper_trietype = TRIE_TYPE( noper_type );
|
|
#if defined(DEBUGGING) || defined(NOJUMPTRIE)
|
|
regnode * const noper_next = regnext( noper );
|
|
#endif
|
|
|
|
DEBUG_OPTIMISE_r({
|
|
regprop(RExC_rx, mysv, cur);
|
|
PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
|
|
(int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
|
|
|
|
regprop(RExC_rx, mysv, noper);
|
|
PerlIO_printf( Perl_debug_log, " -> %s",
|
|
SvPV_nolen_const(mysv));
|
|
|
|
if ( noper_next ) {
|
|
regprop(RExC_rx, mysv, noper_next );
|
|
PerlIO_printf( Perl_debug_log,"\t=> %s\t",
|
|
SvPV_nolen_const(mysv));
|
|
}
|
|
PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
|
|
REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
|
|
});
|
|
|
|
/* Is noper a trieable nodetype that can be merged with the
|
|
* current trie (if there is one)? */
|
|
if ( noper_trietype
|
|
&&
|
|
(
|
|
/* XXX: Currently we cannot allow a NOTHING node to be the first element
|
|
* of a TRIEABLE sequence, Otherwise we will overwrite the regop following
|
|
* the NOTHING with the TRIE regop later on. This is because a NOTHING node
|
|
* is only one regnode wide, and a TRIE is two regnodes. An example of a
|
|
* problematic pattern is: "x" =~ /\A(?>(?:(?:)A|B|C?x))\z/
|
|
* At a later point of time we can somewhat workaround this by handling
|
|
* NOTHING -> EXACT sequences as generated by /(?:)A|(?:)B/ type patterns,
|
|
* as we can effectively ignore the NOTHING regop in that case.
|
|
* This clause, which allows NOTHING to start a sequence is left commented
|
|
* out as a reference.
|
|
* - Yves
|
|
|
|
( noper_trietype == NOTHING)
|
|
|| ( trietype == NOTHING )
|
|
*/
|
|
( noper_trietype == NOTHING && trietype )
|
|
|| ( trietype == noper_trietype )
|
|
)
|
|
#ifdef NOJUMPTRIE
|
|
&& noper_next == tail
|
|
#endif
|
|
&& count < U16_MAX)
|
|
{
|
|
/* Handle mergable triable node
|
|
* Either we are the first node in a new trieable sequence,
|
|
* in which case we do some bookkeeping, otherwise we update
|
|
* the end pointer. */
|
|
count++;
|
|
if ( !first ) {
|
|
first = cur;
|
|
trietype = noper_trietype;
|
|
} else {
|
|
if ( trietype == NOTHING )
|
|
trietype = noper_trietype;
|
|
last = cur;
|
|
}
|
|
} /* end handle mergable triable node */
|
|
else {
|
|
/* handle unmergable node -
|
|
* noper may either be a triable node which can not be tried
|
|
* together with the current trie, or a non triable node */
|
|
if ( last ) {
|
|
/* If last is set and trietype is not NOTHING then we have found
|
|
* at least two triable branch sequences in a row of a similar
|
|
* trietype so we can turn them into a trie. If/when we
|
|
* allow NOTHING to start a trie sequence this condition will be
|
|
* required, and it isn't expensive so we leave it in for now. */
|
|
if ( trietype != NOTHING )
|
|
make_trie( pRExC_state,
|
|
startbranch, first, cur, tail, count,
|
|
trietype, depth+1 );
|
|
last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
|
|
}
|
|
if ( noper_trietype
|
|
#ifdef NOJUMPTRIE
|
|
&& noper_next == tail
|
|
#endif
|
|
){
|
|
/* noper is triable, so we can start a new trie sequence */
|
|
count = 1;
|
|
first = cur;
|
|
trietype = noper_trietype;
|
|
} else if (first) {
|
|
/* if we already saw a first but the current node is not triable then we have
|
|
* to reset the first information. */
|
|
count = 0;
|
|
first = NULL;
|
|
trietype = 0;
|
|
}
|
|
} /* end handle unmergable node */
|
|
} /* loop over branches */
|
|
DEBUG_OPTIMISE_r({
|
|
regprop(RExC_rx, mysv, cur);
|
|
PerlIO_printf( Perl_debug_log,
|
|
"%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
|
|
"", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
|
|
|
|
});
|
|
if ( last && trietype != NOTHING ) {
|
|
/* the last branch of the sequence was part of a trie,
|
|
* so we have to construct it here outside of the loop
|
|
*/
|
|
made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
|
|
#ifdef TRIE_STUDY_OPT
|
|
if ( ((made == MADE_EXACT_TRIE &&
|
|
startbranch == first)
|
|
|| ( first_non_open == first )) &&
|
|
depth==0 ) {
|
|
flags |= SCF_TRIE_RESTUDY;
|
|
if ( startbranch == first
|
|
&& scan == tail )
|
|
{
|
|
RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
|
|
}
|
|
}
|
|
#endif
|
|
} /* end if ( last) */
|
|
} /* TRIE_MAXBUF is non zero */
|
|
|
|
} /* do trie */
|
|
|
|
}
|
|
else if ( code == BRANCHJ ) { /* single branch is optimized. */
|
|
scan = NEXTOPER(NEXTOPER(scan));
|
|
} else /* single branch is optimized. */
|
|
scan = NEXTOPER(scan);
|
|
continue;
|
|
} else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
|
|
scan_frame *newframe = NULL;
|
|
I32 paren;
|
|
regnode *start;
|
|
regnode *end;
|
|
|
|
if (OP(scan) != SUSPEND) {
|
|
/* set the pointer */
|
|
if (OP(scan) == GOSUB) {
|
|
paren = ARG(scan);
|
|
RExC_recurse[ARG2L(scan)] = scan;
|
|
start = RExC_open_parens[paren-1];
|
|
end = RExC_close_parens[paren-1];
|
|
} else {
|
|
paren = 0;
|
|
start = RExC_rxi->program + 1;
|
|
end = RExC_opend;
|
|
}
|
|
if (!recursed) {
|
|
Newxz(recursed, (((RExC_npar)>>3) +1), U8);
|
|
SAVEFREEPV(recursed);
|
|
}
|
|
if (!PAREN_TEST(recursed,paren+1)) {
|
|
PAREN_SET(recursed,paren+1);
|
|
Newx(newframe,1,scan_frame);
|
|
} else {
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
SCAN_COMMIT(pRExC_state,data,minlenp);
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
is_inf = is_inf_internal = 1;
|
|
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
|
|
cl_anything(pRExC_state, data->start_class);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
} else {
|
|
Newx(newframe,1,scan_frame);
|
|
paren = stopparen;
|
|
start = scan+2;
|
|
end = regnext(scan);
|
|
}
|
|
if (newframe) {
|
|
assert(start);
|
|
assert(end);
|
|
SAVEFREEPV(newframe);
|
|
newframe->next = regnext(scan);
|
|
newframe->last = last;
|
|
newframe->stop = stopparen;
|
|
newframe->prev = frame;
|
|
|
|
frame = newframe;
|
|
scan = start;
|
|
stopparen = paren;
|
|
last = end;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
else if (OP(scan) == EXACT) {
|
|
I32 l = STR_LEN(scan);
|
|
UV uc;
|
|
if (UTF) {
|
|
const U8 * const s = (U8*)STRING(scan);
|
|
uc = utf8_to_uvchr_buf(s, s + l, NULL);
|
|
l = utf8_length(s, s + l);
|
|
} else {
|
|
uc = *((U8*)STRING(scan));
|
|
}
|
|
min += l;
|
|
if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
|
|
/* The code below prefers earlier match for fixed
|
|
offset, later match for variable offset. */
|
|
if (data->last_end == -1) { /* Update the start info. */
|
|
data->last_start_min = data->pos_min;
|
|
data->last_start_max = is_inf
|
|
? I32_MAX : data->pos_min + data->pos_delta;
|
|
}
|
|
sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
|
|
if (UTF)
|
|
SvUTF8_on(data->last_found);
|
|
{
|
|
SV * const sv = data->last_found;
|
|
MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
|
|
mg_find(sv, PERL_MAGIC_utf8) : NULL;
|
|
if (mg && mg->mg_len >= 0)
|
|
mg->mg_len += utf8_length((U8*)STRING(scan),
|
|
(U8*)STRING(scan)+STR_LEN(scan));
|
|
}
|
|
data->last_end = data->pos_min + l;
|
|
data->pos_min += l; /* As in the first entry. */
|
|
data->flags &= ~SF_BEFORE_EOL;
|
|
}
|
|
if (flags & SCF_DO_STCLASS_AND) {
|
|
/* Check whether it is compatible with what we know already! */
|
|
int compat = 1;
|
|
|
|
|
|
/* If compatible, we or it in below. It is compatible if is
|
|
* in the bitmp and either 1) its bit or its fold is set, or 2)
|
|
* it's for a locale. Even if there isn't unicode semantics
|
|
* here, at runtime there may be because of matching against a
|
|
* utf8 string, so accept a possible false positive for
|
|
* latin1-range folds */
|
|
if (uc >= 0x100 ||
|
|
(!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
|
|
&& !ANYOF_BITMAP_TEST(data->start_class, uc)
|
|
&& (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
|
|
|| !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
|
|
)
|
|
{
|
|
compat = 0;
|
|
}
|
|
ANYOF_CLASS_ZERO(data->start_class);
|
|
ANYOF_BITMAP_ZERO(data->start_class);
|
|
if (compat)
|
|
ANYOF_BITMAP_SET(data->start_class, uc);
|
|
else if (uc >= 0x100) {
|
|
int i;
|
|
|
|
/* Some Unicode code points fold to the Latin1 range; as
|
|
* XXX temporary code, instead of figuring out if this is
|
|
* one, just assume it is and set all the start class bits
|
|
* that could be some such above 255 code point's fold
|
|
* which will generate fals positives. As the code
|
|
* elsewhere that does compute the fold settles down, it
|
|
* can be extracted out and re-used here */
|
|
for (i = 0; i < 256; i++){
|
|
if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
|
|
ANYOF_BITMAP_SET(data->start_class, i);
|
|
}
|
|
}
|
|
}
|
|
data->start_class->flags &= ~ANYOF_EOS;
|
|
if (uc < 0x100)
|
|
data->start_class->flags &= ~ANYOF_UNICODE_ALL;
|
|
}
|
|
else if (flags & SCF_DO_STCLASS_OR) {
|
|
/* false positive possible if the class is case-folded */
|
|
if (uc < 0x100)
|
|
ANYOF_BITMAP_SET(data->start_class, uc);
|
|
else
|
|
data->start_class->flags |= ANYOF_UNICODE_ALL;
|
|
data->start_class->flags &= ~ANYOF_EOS;
|
|
cl_and(data->start_class, and_withp);
|
|
}
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
|
|
I32 l = STR_LEN(scan);
|
|
UV uc = *((U8*)STRING(scan));
|
|
|
|
/* Search for fixed substrings supports EXACT only. */
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
assert(data);
|
|
SCAN_COMMIT(pRExC_state, data, minlenp);
|
|
}
|
|
if (UTF) {
|
|
const U8 * const s = (U8 *)STRING(scan);
|
|
uc = utf8_to_uvchr_buf(s, s + l, NULL);
|
|
l = utf8_length(s, s + l);
|
|
}
|
|
else if (has_exactf_sharp_s) {
|
|
RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
|
|
}
|
|
min += l - min_subtract;
|
|
if (min < 0) {
|
|
min = 0;
|
|
}
|
|
delta += min_subtract;
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
data->pos_min += l - min_subtract;
|
|
if (data->pos_min < 0) {
|
|
data->pos_min = 0;
|
|
}
|
|
data->pos_delta += min_subtract;
|
|
if (min_subtract) {
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
}
|
|
if (flags & SCF_DO_STCLASS_AND) {
|
|
/* Check whether it is compatible with what we know already! */
|
|
int compat = 1;
|
|
if (uc >= 0x100 ||
|
|
(!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
|
|
&& !ANYOF_BITMAP_TEST(data->start_class, uc)
|
|
&& !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
|
|
{
|
|
compat = 0;
|
|
}
|
|
ANYOF_CLASS_ZERO(data->start_class);
|
|
ANYOF_BITMAP_ZERO(data->start_class);
|
|
if (compat) {
|
|
ANYOF_BITMAP_SET(data->start_class, uc);
|
|
data->start_class->flags &= ~ANYOF_EOS;
|
|
data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
|
|
if (OP(scan) == EXACTFL) {
|
|
/* XXX This set is probably no longer necessary, and
|
|
* probably wrong as LOCALE now is on in the initial
|
|
* state */
|
|
data->start_class->flags |= ANYOF_LOCALE;
|
|
}
|
|
else {
|
|
|
|
/* Also set the other member of the fold pair. In case
|
|
* that unicode semantics is called for at runtime, use
|
|
* the full latin1 fold. (Can't do this for locale,
|
|
* because not known until runtime) */
|
|
ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
|
|
|
|
/* All other (EXACTFL handled above) folds except under
|
|
* /iaa that include s, S, and sharp_s also may include
|
|
* the others */
|
|
if (OP(scan) != EXACTFA) {
|
|
if (uc == 's' || uc == 'S') {
|
|
ANYOF_BITMAP_SET(data->start_class,
|
|
LATIN_SMALL_LETTER_SHARP_S);
|
|
}
|
|
else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
|
|
ANYOF_BITMAP_SET(data->start_class, 's');
|
|
ANYOF_BITMAP_SET(data->start_class, 'S');
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (uc >= 0x100) {
|
|
int i;
|
|
for (i = 0; i < 256; i++){
|
|
if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
|
|
ANYOF_BITMAP_SET(data->start_class, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (flags & SCF_DO_STCLASS_OR) {
|
|
if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
|
|
/* false positive possible if the class is case-folded.
|
|
Assume that the locale settings are the same... */
|
|
if (uc < 0x100) {
|
|
ANYOF_BITMAP_SET(data->start_class, uc);
|
|
if (OP(scan) != EXACTFL) {
|
|
|
|
/* And set the other member of the fold pair, but
|
|
* can't do that in locale because not known until
|
|
* run-time */
|
|
ANYOF_BITMAP_SET(data->start_class,
|
|
PL_fold_latin1[uc]);
|
|
|
|
/* All folds except under /iaa that include s, S,
|
|
* and sharp_s also may include the others */
|
|
if (OP(scan) != EXACTFA) {
|
|
if (uc == 's' || uc == 'S') {
|
|
ANYOF_BITMAP_SET(data->start_class,
|
|
LATIN_SMALL_LETTER_SHARP_S);
|
|
}
|
|
else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
|
|
ANYOF_BITMAP_SET(data->start_class, 's');
|
|
ANYOF_BITMAP_SET(data->start_class, 'S');
|
|
}
|
|
}
|
|
}
|
|
}
|
|
data->start_class->flags &= ~ANYOF_EOS;
|
|
}
|
|
cl_and(data->start_class, and_withp);
|
|
}
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
else if (REGNODE_VARIES(OP(scan))) {
|
|
I32 mincount, maxcount, minnext, deltanext, fl = 0;
|
|
I32 f = flags, pos_before = 0;
|
|
regnode * const oscan = scan;
|
|
struct regnode_charclass_class this_class;
|
|
struct regnode_charclass_class *oclass = NULL;
|
|
I32 next_is_eval = 0;
|
|
|
|
switch (PL_regkind[OP(scan)]) {
|
|
case WHILEM: /* End of (?:...)* . */
|
|
scan = NEXTOPER(scan);
|
|
goto finish;
|
|
case PLUS:
|
|
if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
|
|
next = NEXTOPER(scan);
|
|
if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
|
|
mincount = 1;
|
|
maxcount = REG_INFTY;
|
|
next = regnext(scan);
|
|
scan = NEXTOPER(scan);
|
|
goto do_curly;
|
|
}
|
|
}
|
|
if (flags & SCF_DO_SUBSTR)
|
|
data->pos_min++;
|
|
min++;
|
|
/* Fall through. */
|
|
case STAR:
|
|
if (flags & SCF_DO_STCLASS) {
|
|
mincount = 0;
|
|
maxcount = REG_INFTY;
|
|
next = regnext(scan);
|
|
scan = NEXTOPER(scan);
|
|
goto do_curly;
|
|
}
|
|
is_inf = is_inf_internal = 1;
|
|
scan = regnext(scan);
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
goto optimize_curly_tail;
|
|
case CURLY:
|
|
if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
|
|
&& (scan->flags == stopparen))
|
|
{
|
|
mincount = 1;
|
|
maxcount = 1;
|
|
} else {
|
|
mincount = ARG1(scan);
|
|
maxcount = ARG2(scan);
|
|
}
|
|
next = regnext(scan);
|
|
if (OP(scan) == CURLYX) {
|
|
I32 lp = (data ? *(data->last_closep) : 0);
|
|
scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
|
|
}
|
|
scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
|
|
next_is_eval = (OP(scan) == EVAL);
|
|
do_curly:
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
|
|
pos_before = data->pos_min;
|
|
}
|
|
if (data) {
|
|
fl = data->flags;
|
|
data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
|
|
if (is_inf)
|
|
data->flags |= SF_IS_INF;
|
|
}
|
|
if (flags & SCF_DO_STCLASS) {
|
|
cl_init(pRExC_state, &this_class);
|
|
oclass = data->start_class;
|
|
data->start_class = &this_class;
|
|
f |= SCF_DO_STCLASS_AND;
|
|
f &= ~SCF_DO_STCLASS_OR;
|
|
}
|
|
/* Exclude from super-linear cache processing any {n,m}
|
|
regops for which the combination of input pos and regex
|
|
pos is not enough information to determine if a match
|
|
will be possible.
|
|
|
|
For example, in the regex /foo(bar\s*){4,8}baz/ with the
|
|
regex pos at the \s*, the prospects for a match depend not
|
|
only on the input position but also on how many (bar\s*)
|
|
repeats into the {4,8} we are. */
|
|
if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
|
|
f &= ~SCF_WHILEM_VISITED_POS;
|
|
|
|
/* This will finish on WHILEM, setting scan, or on NULL: */
|
|
minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
|
|
last, data, stopparen, recursed, NULL,
|
|
(mincount == 0
|
|
? (f & ~SCF_DO_SUBSTR) : f),depth+1);
|
|
|
|
if (flags & SCF_DO_STCLASS)
|
|
data->start_class = oclass;
|
|
if (mincount == 0 || minnext == 0) {
|
|
if (flags & SCF_DO_STCLASS_OR) {
|
|
cl_or(pRExC_state, data->start_class, &this_class);
|
|
}
|
|
else if (flags & SCF_DO_STCLASS_AND) {
|
|
/* Switch to OR mode: cache the old value of
|
|
* data->start_class */
|
|
INIT_AND_WITHP;
|
|
StructCopy(data->start_class, and_withp,
|
|
struct regnode_charclass_class);
|
|
flags &= ~SCF_DO_STCLASS_AND;
|
|
StructCopy(&this_class, data->start_class,
|
|
struct regnode_charclass_class);
|
|
flags |= SCF_DO_STCLASS_OR;
|
|
data->start_class->flags |= ANYOF_EOS;
|
|
}
|
|
} else { /* Non-zero len */
|
|
if (flags & SCF_DO_STCLASS_OR) {
|
|
cl_or(pRExC_state, data->start_class, &this_class);
|
|
cl_and(data->start_class, and_withp);
|
|
}
|
|
else if (flags & SCF_DO_STCLASS_AND)
|
|
cl_and(data->start_class, &this_class);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
if (!scan) /* It was not CURLYX, but CURLY. */
|
|
scan = next;
|
|
if ( /* ? quantifier ok, except for (?{ ... }) */
|
|
(next_is_eval || !(mincount == 0 && maxcount == 1))
|
|
&& (minnext == 0) && (deltanext == 0)
|
|
&& data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
|
|
&& maxcount <= REG_INFTY/3) /* Complement check for big count */
|
|
{
|
|
ckWARNreg(RExC_parse,
|
|
"Quantifier unexpected on zero-length expression");
|
|
}
|
|
|
|
min += minnext * mincount;
|
|
is_inf_internal |= ((maxcount == REG_INFTY
|
|
&& (minnext + deltanext) > 0)
|
|
|| deltanext == I32_MAX);
|
|
is_inf |= is_inf_internal;
|
|
delta += (minnext + deltanext) * maxcount - minnext * mincount;
|
|
|
|
/* Try powerful optimization CURLYX => CURLYN. */
|
|
if ( OP(oscan) == CURLYX && data
|
|
&& data->flags & SF_IN_PAR
|
|
&& !(data->flags & SF_HAS_EVAL)
|
|
&& !deltanext && minnext == 1 ) {
|
|
/* Try to optimize to CURLYN. */
|
|
regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
|
|
regnode * const nxt1 = nxt;
|
|
#ifdef DEBUGGING
|
|
regnode *nxt2;
|
|
#endif
|
|
|
|
/* Skip open. */
|
|
nxt = regnext(nxt);
|
|
if (!REGNODE_SIMPLE(OP(nxt))
|
|
&& !(PL_regkind[OP(nxt)] == EXACT
|
|
&& STR_LEN(nxt) == 1))
|
|
goto nogo;
|
|
#ifdef DEBUGGING
|
|
nxt2 = nxt;
|
|
#endif
|
|
nxt = regnext(nxt);
|
|
if (OP(nxt) != CLOSE)
|
|
goto nogo;
|
|
if (RExC_open_parens) {
|
|
RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
|
|
RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
|
|
}
|
|
/* Now we know that nxt2 is the only contents: */
|
|
oscan->flags = (U8)ARG(nxt);
|
|
OP(oscan) = CURLYN;
|
|
OP(nxt1) = NOTHING; /* was OPEN. */
|
|
|
|
#ifdef DEBUGGING
|
|
OP(nxt1 + 1) = OPTIMIZED; /* was count. */
|
|
NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
|
|
NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
|
|
OP(nxt) = OPTIMIZED; /* was CLOSE. */
|
|
OP(nxt + 1) = OPTIMIZED; /* was count. */
|
|
NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
|
|
#endif
|
|
}
|
|
nogo:
|
|
|
|
/* Try optimization CURLYX => CURLYM. */
|
|
if ( OP(oscan) == CURLYX && data
|
|
&& !(data->flags & SF_HAS_PAR)
|
|
&& !(data->flags & SF_HAS_EVAL)
|
|
&& !deltanext /* atom is fixed width */
|
|
&& minnext != 0 /* CURLYM can't handle zero width */
|
|
) {
|
|
/* XXXX How to optimize if data == 0? */
|
|
/* Optimize to a simpler form. */
|
|
regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
|
|
regnode *nxt2;
|
|
|
|
OP(oscan) = CURLYM;
|
|
while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
|
|
&& (OP(nxt2) != WHILEM))
|
|
nxt = nxt2;
|
|
OP(nxt2) = SUCCEED; /* Whas WHILEM */
|
|
/* Need to optimize away parenths. */
|
|
if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
|
|
/* Set the parenth number. */
|
|
regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
|
|
|
|
oscan->flags = (U8)ARG(nxt);
|
|
if (RExC_open_parens) {
|
|
RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
|
|
RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
|
|
}
|
|
OP(nxt1) = OPTIMIZED; /* was OPEN. */
|
|
OP(nxt) = OPTIMIZED; /* was CLOSE. */
|
|
|
|
#ifdef DEBUGGING
|
|
OP(nxt1 + 1) = OPTIMIZED; /* was count. */
|
|
OP(nxt + 1) = OPTIMIZED; /* was count. */
|
|
NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
|
|
NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
|
|
#endif
|
|
#if 0
|
|
while ( nxt1 && (OP(nxt1) != WHILEM)) {
|
|
regnode *nnxt = regnext(nxt1);
|
|
if (nnxt == nxt) {
|
|
if (reg_off_by_arg[OP(nxt1)])
|
|
ARG_SET(nxt1, nxt2 - nxt1);
|
|
else if (nxt2 - nxt1 < U16_MAX)
|
|
NEXT_OFF(nxt1) = nxt2 - nxt1;
|
|
else
|
|
OP(nxt) = NOTHING; /* Cannot beautify */
|
|
}
|
|
nxt1 = nnxt;
|
|
}
|
|
#endif
|
|
/* Optimize again: */
|
|
study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
|
|
NULL, stopparen, recursed, NULL, 0,depth+1);
|
|
}
|
|
else
|
|
oscan->flags = 0;
|
|
}
|
|
else if ((OP(oscan) == CURLYX)
|
|
&& (flags & SCF_WHILEM_VISITED_POS)
|
|
/* See the comment on a similar expression above.
|
|
However, this time it's not a subexpression
|
|
we care about, but the expression itself. */
|
|
&& (maxcount == REG_INFTY)
|
|
&& data && ++data->whilem_c < 16) {
|
|
/* This stays as CURLYX, we can put the count/of pair. */
|
|
/* Find WHILEM (as in regexec.c) */
|
|
regnode *nxt = oscan + NEXT_OFF(oscan);
|
|
|
|
if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
|
|
nxt += ARG(nxt);
|
|
PREVOPER(nxt)->flags = (U8)(data->whilem_c
|
|
| (RExC_whilem_seen << 4)); /* On WHILEM */
|
|
}
|
|
if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
|
|
pars++;
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
SV *last_str = NULL;
|
|
int counted = mincount != 0;
|
|
|
|
if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
|
|
#if defined(SPARC64_GCC_WORKAROUND)
|
|
I32 b = 0;
|
|
STRLEN l = 0;
|
|
const char *s = NULL;
|
|
I32 old = 0;
|
|
|
|
if (pos_before >= data->last_start_min)
|
|
b = pos_before;
|
|
else
|
|
b = data->last_start_min;
|
|
|
|
l = 0;
|
|
s = SvPV_const(data->last_found, l);
|
|
old = b - data->last_start_min;
|
|
|
|
#else
|
|
I32 b = pos_before >= data->last_start_min
|
|
? pos_before : data->last_start_min;
|
|
STRLEN l;
|
|
const char * const s = SvPV_const(data->last_found, l);
|
|
I32 old = b - data->last_start_min;
|
|
#endif
|
|
|
|
if (UTF)
|
|
old = utf8_hop((U8*)s, old) - (U8*)s;
|
|
l -= old;
|
|
/* Get the added string: */
|
|
last_str = newSVpvn_utf8(s + old, l, UTF);
|
|
if (deltanext == 0 && pos_before == b) {
|
|
/* What was added is a constant string */
|
|
if (mincount > 1) {
|
|
SvGROW(last_str, (mincount * l) + 1);
|
|
repeatcpy(SvPVX(last_str) + l,
|
|
SvPVX_const(last_str), l, mincount - 1);
|
|
SvCUR_set(last_str, SvCUR(last_str) * mincount);
|
|
/* Add additional parts. */
|
|
SvCUR_set(data->last_found,
|
|
SvCUR(data->last_found) - l);
|
|
sv_catsv(data->last_found, last_str);
|
|
{
|
|
SV * sv = data->last_found;
|
|
MAGIC *mg =
|
|
SvUTF8(sv) && SvMAGICAL(sv) ?
|
|
mg_find(sv, PERL_MAGIC_utf8) : NULL;
|
|
if (mg && mg->mg_len >= 0)
|
|
mg->mg_len += CHR_SVLEN(last_str) - l;
|
|
}
|
|
data->last_end += l * (mincount - 1);
|
|
}
|
|
} else {
|
|
/* start offset must point into the last copy */
|
|
data->last_start_min += minnext * (mincount - 1);
|
|
data->last_start_max += is_inf ? I32_MAX
|
|
: (maxcount - 1) * (minnext + data->pos_delta);
|
|
}
|
|
}
|
|
/* It is counted once already... */
|
|
data->pos_min += minnext * (mincount - counted);
|
|
data->pos_delta += - counted * deltanext +
|
|
(minnext + deltanext) * maxcount - minnext * mincount;
|
|
if (mincount != maxcount) {
|
|
/* Cannot extend fixed substrings found inside
|
|
the group. */
|
|
SCAN_COMMIT(pRExC_state,data,minlenp);
|
|
if (mincount && last_str) {
|
|
SV * const sv = data->last_found;
|
|
MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
|
|
mg_find(sv, PERL_MAGIC_utf8) : NULL;
|
|
|
|
if (mg)
|
|
mg->mg_len = -1;
|
|
sv_setsv(sv, last_str);
|
|
data->last_end = data->pos_min;
|
|
data->last_start_min =
|
|
data->pos_min - CHR_SVLEN(last_str);
|
|
data->last_start_max = is_inf
|
|
? I32_MAX
|
|
: data->pos_min + data->pos_delta
|
|
- CHR_SVLEN(last_str);
|
|
}
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
SvREFCNT_dec(last_str);
|
|
}
|
|
if (data && (fl & SF_HAS_EVAL))
|
|
data->flags |= SF_HAS_EVAL;
|
|
optimize_curly_tail:
|
|
if (OP(oscan) != CURLYX) {
|
|
while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
|
|
&& NEXT_OFF(next))
|
|
NEXT_OFF(oscan) += NEXT_OFF(next);
|
|
}
|
|
continue;
|
|
default: /* REF, ANYOFV, and CLUMP only? */
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
is_inf = is_inf_internal = 1;
|
|
if (flags & SCF_DO_STCLASS_OR)
|
|
cl_anything(pRExC_state, data->start_class);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
break;
|
|
}
|
|
}
|
|
else if (OP(scan) == LNBREAK) {
|
|
if (flags & SCF_DO_STCLASS) {
|
|
int value = 0;
|
|
data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
|
|
if (flags & SCF_DO_STCLASS_AND) {
|
|
for (value = 0; value < 256; value++)
|
|
if (!is_VERTWS_cp(value))
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
else {
|
|
for (value = 0; value < 256; value++)
|
|
if (is_VERTWS_cp(value))
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
if (flags & SCF_DO_STCLASS_OR)
|
|
cl_and(data->start_class, and_withp);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
min += 1;
|
|
delta += 1;
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
|
|
data->pos_min += 1;
|
|
data->pos_delta += 1;
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
}
|
|
else if (REGNODE_SIMPLE(OP(scan))) {
|
|
int value = 0;
|
|
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
SCAN_COMMIT(pRExC_state,data,minlenp);
|
|
data->pos_min++;
|
|
}
|
|
min++;
|
|
if (flags & SCF_DO_STCLASS) {
|
|
data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
|
|
|
|
/* Some of the logic below assumes that switching
|
|
locale on will only add false positives. */
|
|
switch (PL_regkind[OP(scan)]) {
|
|
case SANY:
|
|
default:
|
|
do_default:
|
|
/* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
|
|
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
|
|
cl_anything(pRExC_state, data->start_class);
|
|
break;
|
|
case REG_ANY:
|
|
if (OP(scan) == SANY)
|
|
goto do_default;
|
|
if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
|
|
value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
|
|
|| ANYOF_CLASS_TEST_ANY_SET(data->start_class));
|
|
cl_anything(pRExC_state, data->start_class);
|
|
}
|
|
if (flags & SCF_DO_STCLASS_AND || !value)
|
|
ANYOF_BITMAP_CLEAR(data->start_class,'\n');
|
|
break;
|
|
case ANYOF:
|
|
if (flags & SCF_DO_STCLASS_AND)
|
|
cl_and(data->start_class,
|
|
(struct regnode_charclass_class*)scan);
|
|
else
|
|
cl_or(pRExC_state, data->start_class,
|
|
(struct regnode_charclass_class*)scan);
|
|
break;
|
|
case ALNUM:
|
|
if (flags & SCF_DO_STCLASS_AND) {
|
|
if (!(data->start_class->flags & ANYOF_LOCALE)) {
|
|
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
|
|
if (OP(scan) == ALNUMU) {
|
|
for (value = 0; value < 256; value++) {
|
|
if (!isWORDCHAR_L1(value)) {
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
}
|
|
} else {
|
|
for (value = 0; value < 256; value++) {
|
|
if (!isALNUM(value)) {
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (data->start_class->flags & ANYOF_LOCALE)
|
|
ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
|
|
|
|
/* Even if under locale, set the bits for non-locale
|
|
* in case it isn't a true locale-node. This will
|
|
* create false positives if it truly is locale */
|
|
if (OP(scan) == ALNUMU) {
|
|
for (value = 0; value < 256; value++) {
|
|
if (isWORDCHAR_L1(value)) {
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
}
|
|
} else {
|
|
for (value = 0; value < 256; value++) {
|
|
if (isALNUM(value)) {
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case NALNUM:
|
|
if (flags & SCF_DO_STCLASS_AND) {
|
|
if (!(data->start_class->flags & ANYOF_LOCALE)) {
|
|
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
|
|
if (OP(scan) == NALNUMU) {
|
|
for (value = 0; value < 256; value++) {
|
|
if (isWORDCHAR_L1(value)) {
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
}
|
|
} else {
|
|
for (value = 0; value < 256; value++) {
|
|
if (isALNUM(value)) {
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (data->start_class->flags & ANYOF_LOCALE)
|
|
ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
|
|
|
|
/* Even if under locale, set the bits for non-locale in
|
|
* case it isn't a true locale-node. This will create
|
|
* false positives if it truly is locale */
|
|
if (OP(scan) == NALNUMU) {
|
|
for (value = 0; value < 256; value++) {
|
|
if (! isWORDCHAR_L1(value)) {
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
}
|
|
} else {
|
|
for (value = 0; value < 256; value++) {
|
|
if (! isALNUM(value)) {
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case SPACE:
|
|
if (flags & SCF_DO_STCLASS_AND) {
|
|
if (!(data->start_class->flags & ANYOF_LOCALE)) {
|
|
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
|
|
if (OP(scan) == SPACEU) {
|
|
for (value = 0; value < 256; value++) {
|
|
if (!isSPACE_L1(value)) {
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
}
|
|
} else {
|
|
for (value = 0; value < 256; value++) {
|
|
if (!isSPACE(value)) {
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (data->start_class->flags & ANYOF_LOCALE) {
|
|
ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
|
|
}
|
|
if (OP(scan) == SPACEU) {
|
|
for (value = 0; value < 256; value++) {
|
|
if (isSPACE_L1(value)) {
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
}
|
|
} else {
|
|
for (value = 0; value < 256; value++) {
|
|
if (isSPACE(value)) {
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case NSPACE:
|
|
if (flags & SCF_DO_STCLASS_AND) {
|
|
if (!(data->start_class->flags & ANYOF_LOCALE)) {
|
|
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
|
|
if (OP(scan) == NSPACEU) {
|
|
for (value = 0; value < 256; value++) {
|
|
if (isSPACE_L1(value)) {
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
}
|
|
} else {
|
|
for (value = 0; value < 256; value++) {
|
|
if (isSPACE(value)) {
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (data->start_class->flags & ANYOF_LOCALE)
|
|
ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
|
|
if (OP(scan) == NSPACEU) {
|
|
for (value = 0; value < 256; value++) {
|
|
if (!isSPACE_L1(value)) {
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (value = 0; value < 256; value++) {
|
|
if (!isSPACE(value)) {
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case DIGIT:
|
|
if (flags & SCF_DO_STCLASS_AND) {
|
|
if (!(data->start_class->flags & ANYOF_LOCALE)) {
|
|
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
|
|
for (value = 0; value < 256; value++)
|
|
if (!isDIGIT(value))
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
}
|
|
else {
|
|
if (data->start_class->flags & ANYOF_LOCALE)
|
|
ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
|
|
for (value = 0; value < 256; value++)
|
|
if (isDIGIT(value))
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
break;
|
|
case NDIGIT:
|
|
if (flags & SCF_DO_STCLASS_AND) {
|
|
if (!(data->start_class->flags & ANYOF_LOCALE))
|
|
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
|
|
for (value = 0; value < 256; value++)
|
|
if (isDIGIT(value))
|
|
ANYOF_BITMAP_CLEAR(data->start_class, value);
|
|
}
|
|
else {
|
|
if (data->start_class->flags & ANYOF_LOCALE)
|
|
ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
|
|
for (value = 0; value < 256; value++)
|
|
if (!isDIGIT(value))
|
|
ANYOF_BITMAP_SET(data->start_class, value);
|
|
}
|
|
break;
|
|
CASE_SYNST_FNC(VERTWS);
|
|
CASE_SYNST_FNC(HORIZWS);
|
|
|
|
}
|
|
if (flags & SCF_DO_STCLASS_OR)
|
|
cl_and(data->start_class, and_withp);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
}
|
|
else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
|
|
data->flags |= (OP(scan) == MEOL
|
|
? SF_BEFORE_MEOL
|
|
: SF_BEFORE_SEOL);
|
|
}
|
|
else if ( PL_regkind[OP(scan)] == BRANCHJ
|
|
/* Lookbehind, or need to calculate parens/evals/stclass: */
|
|
&& (scan->flags || data || (flags & SCF_DO_STCLASS))
|
|
&& (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
|
|
if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
|
|
|| OP(scan) == UNLESSM )
|
|
{
|
|
/* Negative Lookahead/lookbehind
|
|
In this case we can't do fixed string optimisation.
|
|
*/
|
|
|
|
I32 deltanext, minnext, fake = 0;
|
|
regnode *nscan;
|
|
struct regnode_charclass_class intrnl;
|
|
int f = 0;
|
|
|
|
data_fake.flags = 0;
|
|
if (data) {
|
|
data_fake.whilem_c = data->whilem_c;
|
|
data_fake.last_closep = data->last_closep;
|
|
}
|
|
else
|
|
data_fake.last_closep = &fake;
|
|
data_fake.pos_delta = delta;
|
|
if ( flags & SCF_DO_STCLASS && !scan->flags
|
|
&& OP(scan) == IFMATCH ) { /* Lookahead */
|
|
cl_init(pRExC_state, &intrnl);
|
|
data_fake.start_class = &intrnl;
|
|
f |= SCF_DO_STCLASS_AND;
|
|
}
|
|
if (flags & SCF_WHILEM_VISITED_POS)
|
|
f |= SCF_WHILEM_VISITED_POS;
|
|
next = regnext(scan);
|
|
nscan = NEXTOPER(NEXTOPER(scan));
|
|
minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
|
|
last, &data_fake, stopparen, recursed, NULL, f, depth+1);
|
|
if (scan->flags) {
|
|
if (deltanext) {
|
|
FAIL("Variable length lookbehind not implemented");
|
|
}
|
|
else if (minnext > (I32)U8_MAX) {
|
|
FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
|
|
}
|
|
scan->flags = (U8)minnext;
|
|
}
|
|
if (data) {
|
|
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
|
|
pars++;
|
|
if (data_fake.flags & SF_HAS_EVAL)
|
|
data->flags |= SF_HAS_EVAL;
|
|
data->whilem_c = data_fake.whilem_c;
|
|
}
|
|
if (f & SCF_DO_STCLASS_AND) {
|
|
if (flags & SCF_DO_STCLASS_OR) {
|
|
/* OR before, AND after: ideally we would recurse with
|
|
* data_fake to get the AND applied by study of the
|
|
* remainder of the pattern, and then derecurse;
|
|
* *** HACK *** for now just treat as "no information".
|
|
* See [perl #56690].
|
|
*/
|
|
cl_init(pRExC_state, data->start_class);
|
|
} else {
|
|
/* AND before and after: combine and continue */
|
|
const int was = (data->start_class->flags & ANYOF_EOS);
|
|
|
|
cl_and(data->start_class, &intrnl);
|
|
if (was)
|
|
data->start_class->flags |= ANYOF_EOS;
|
|
}
|
|
}
|
|
}
|
|
#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
|
|
else {
|
|
/* Positive Lookahead/lookbehind
|
|
In this case we can do fixed string optimisation,
|
|
but we must be careful about it. Note in the case of
|
|
lookbehind the positions will be offset by the minimum
|
|
length of the pattern, something we won't know about
|
|
until after the recurse.
|
|
*/
|
|
I32 deltanext, fake = 0;
|
|
regnode *nscan;
|
|
struct regnode_charclass_class intrnl;
|
|
int f = 0;
|
|
/* We use SAVEFREEPV so that when the full compile
|
|
is finished perl will clean up the allocated
|
|
minlens when it's all done. This way we don't
|
|
have to worry about freeing them when we know
|
|
they wont be used, which would be a pain.
|
|
*/
|
|
I32 *minnextp;
|
|
Newx( minnextp, 1, I32 );
|
|
SAVEFREEPV(minnextp);
|
|
|
|
if (data) {
|
|
StructCopy(data, &data_fake, scan_data_t);
|
|
if ((flags & SCF_DO_SUBSTR) && data->last_found) {
|
|
f |= SCF_DO_SUBSTR;
|
|
if (scan->flags)
|
|
SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
|
|
data_fake.last_found=newSVsv(data->last_found);
|
|
}
|
|
}
|
|
else
|
|
data_fake.last_closep = &fake;
|
|
data_fake.flags = 0;
|
|
data_fake.pos_delta = delta;
|
|
if (is_inf)
|
|
data_fake.flags |= SF_IS_INF;
|
|
if ( flags & SCF_DO_STCLASS && !scan->flags
|
|
&& OP(scan) == IFMATCH ) { /* Lookahead */
|
|
cl_init(pRExC_state, &intrnl);
|
|
data_fake.start_class = &intrnl;
|
|
f |= SCF_DO_STCLASS_AND;
|
|
}
|
|
if (flags & SCF_WHILEM_VISITED_POS)
|
|
f |= SCF_WHILEM_VISITED_POS;
|
|
next = regnext(scan);
|
|
nscan = NEXTOPER(NEXTOPER(scan));
|
|
|
|
*minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
|
|
last, &data_fake, stopparen, recursed, NULL, f,depth+1);
|
|
if (scan->flags) {
|
|
if (deltanext) {
|
|
FAIL("Variable length lookbehind not implemented");
|
|
}
|
|
else if (*minnextp > (I32)U8_MAX) {
|
|
FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
|
|
}
|
|
scan->flags = (U8)*minnextp;
|
|
}
|
|
|
|
*minnextp += min;
|
|
|
|
if (f & SCF_DO_STCLASS_AND) {
|
|
const int was = (data->start_class->flags & ANYOF_EOS);
|
|
|
|
cl_and(data->start_class, &intrnl);
|
|
if (was)
|
|
data->start_class->flags |= ANYOF_EOS;
|
|
}
|
|
if (data) {
|
|
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
|
|
pars++;
|
|
if (data_fake.flags & SF_HAS_EVAL)
|
|
data->flags |= SF_HAS_EVAL;
|
|
data->whilem_c = data_fake.whilem_c;
|
|
if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
|
|
if (RExC_rx->minlen<*minnextp)
|
|
RExC_rx->minlen=*minnextp;
|
|
SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
|
|
SvREFCNT_dec(data_fake.last_found);
|
|
|
|
if ( data_fake.minlen_fixed != minlenp )
|
|
{
|
|
data->offset_fixed= data_fake.offset_fixed;
|
|
data->minlen_fixed= data_fake.minlen_fixed;
|
|
data->lookbehind_fixed+= scan->flags;
|
|
}
|
|
if ( data_fake.minlen_float != minlenp )
|
|
{
|
|
data->minlen_float= data_fake.minlen_float;
|
|
data->offset_float_min=data_fake.offset_float_min;
|
|
data->offset_float_max=data_fake.offset_float_max;
|
|
data->lookbehind_float+= scan->flags;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
#endif
|
|
}
|
|
else if (OP(scan) == OPEN) {
|
|
if (stopparen != (I32)ARG(scan))
|
|
pars++;
|
|
}
|
|
else if (OP(scan) == CLOSE) {
|
|
if (stopparen == (I32)ARG(scan)) {
|
|
break;
|
|
}
|
|
if ((I32)ARG(scan) == is_par) {
|
|
next = regnext(scan);
|
|
|
|
if ( next && (OP(next) != WHILEM) && next < last)
|
|
is_par = 0; /* Disable optimization */
|
|
}
|
|
if (data)
|
|
*(data->last_closep) = ARG(scan);
|
|
}
|
|
else if (OP(scan) == EVAL) {
|
|
if (data)
|
|
data->flags |= SF_HAS_EVAL;
|
|
}
|
|
else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
SCAN_COMMIT(pRExC_state,data,minlenp);
|
|
flags &= ~SCF_DO_SUBSTR;
|
|
}
|
|
if (data && OP(scan)==ACCEPT) {
|
|
data->flags |= SCF_SEEN_ACCEPT;
|
|
if (stopmin > min)
|
|
stopmin = min;
|
|
}
|
|
}
|
|
else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
|
|
{
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
SCAN_COMMIT(pRExC_state,data,minlenp);
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
is_inf = is_inf_internal = 1;
|
|
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
|
|
cl_anything(pRExC_state, data->start_class);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
else if (OP(scan) == GPOS) {
|
|
if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
|
|
!(delta || is_inf || (data && data->pos_delta)))
|
|
{
|
|
if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
|
|
RExC_rx->extflags |= RXf_ANCH_GPOS;
|
|
if (RExC_rx->gofs < (U32)min)
|
|
RExC_rx->gofs = min;
|
|
} else {
|
|
RExC_rx->extflags |= RXf_GPOS_FLOAT;
|
|
RExC_rx->gofs = 0;
|
|
}
|
|
}
|
|
#ifdef TRIE_STUDY_OPT
|
|
#ifdef FULL_TRIE_STUDY
|
|
else if (PL_regkind[OP(scan)] == TRIE) {
|
|
/* NOTE - There is similar code to this block above for handling
|
|
BRANCH nodes on the initial study. If you change stuff here
|
|
check there too. */
|
|
regnode *trie_node= scan;
|
|
regnode *tail= regnext(scan);
|
|
reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
|
|
I32 max1 = 0, min1 = I32_MAX;
|
|
struct regnode_charclass_class accum;
|
|
|
|
if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
|
|
SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
|
|
if (flags & SCF_DO_STCLASS)
|
|
cl_init_zero(pRExC_state, &accum);
|
|
|
|
if (!trie->jump) {
|
|
min1= trie->minlen;
|
|
max1= trie->maxlen;
|
|
} else {
|
|
const regnode *nextbranch= NULL;
|
|
U32 word;
|
|
|
|
for ( word=1 ; word <= trie->wordcount ; word++)
|
|
{
|
|
I32 deltanext=0, minnext=0, f = 0, fake;
|
|
struct regnode_charclass_class this_class;
|
|
|
|
data_fake.flags = 0;
|
|
if (data) {
|
|
data_fake.whilem_c = data->whilem_c;
|
|
data_fake.last_closep = data->last_closep;
|
|
}
|
|
else
|
|
data_fake.last_closep = &fake;
|
|
data_fake.pos_delta = delta;
|
|
if (flags & SCF_DO_STCLASS) {
|
|
cl_init(pRExC_state, &this_class);
|
|
data_fake.start_class = &this_class;
|
|
f = SCF_DO_STCLASS_AND;
|
|
}
|
|
if (flags & SCF_WHILEM_VISITED_POS)
|
|
f |= SCF_WHILEM_VISITED_POS;
|
|
|
|
if (trie->jump[word]) {
|
|
if (!nextbranch)
|
|
nextbranch = trie_node + trie->jump[0];
|
|
scan= trie_node + trie->jump[word];
|
|
/* We go from the jump point to the branch that follows
|
|
it. Note this means we need the vestigal unused branches
|
|
even though they arent otherwise used.
|
|
*/
|
|
minnext = study_chunk(pRExC_state, &scan, minlenp,
|
|
&deltanext, (regnode *)nextbranch, &data_fake,
|
|
stopparen, recursed, NULL, f,depth+1);
|
|
}
|
|
if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
|
|
nextbranch= regnext((regnode*)nextbranch);
|
|
|
|
if (min1 > (I32)(minnext + trie->minlen))
|
|
min1 = minnext + trie->minlen;
|
|
if (max1 < (I32)(minnext + deltanext + trie->maxlen))
|
|
max1 = minnext + deltanext + trie->maxlen;
|
|
if (deltanext == I32_MAX)
|
|
is_inf = is_inf_internal = 1;
|
|
|
|
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
|
|
pars++;
|
|
if (data_fake.flags & SCF_SEEN_ACCEPT) {
|
|
if ( stopmin > min + min1)
|
|
stopmin = min + min1;
|
|
flags &= ~SCF_DO_SUBSTR;
|
|
if (data)
|
|
data->flags |= SCF_SEEN_ACCEPT;
|
|
}
|
|
if (data) {
|
|
if (data_fake.flags & SF_HAS_EVAL)
|
|
data->flags |= SF_HAS_EVAL;
|
|
data->whilem_c = data_fake.whilem_c;
|
|
}
|
|
if (flags & SCF_DO_STCLASS)
|
|
cl_or(pRExC_state, &accum, &this_class);
|
|
}
|
|
}
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
data->pos_min += min1;
|
|
data->pos_delta += max1 - min1;
|
|
if (max1 != min1 || is_inf)
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
min += min1;
|
|
delta += max1 - min1;
|
|
if (flags & SCF_DO_STCLASS_OR) {
|
|
cl_or(pRExC_state, data->start_class, &accum);
|
|
if (min1) {
|
|
cl_and(data->start_class, and_withp);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
}
|
|
else if (flags & SCF_DO_STCLASS_AND) {
|
|
if (min1) {
|
|
cl_and(data->start_class, &accum);
|
|
flags &= ~SCF_DO_STCLASS;
|
|
}
|
|
else {
|
|
/* Switch to OR mode: cache the old value of
|
|
* data->start_class */
|
|
INIT_AND_WITHP;
|
|
StructCopy(data->start_class, and_withp,
|
|
struct regnode_charclass_class);
|
|
flags &= ~SCF_DO_STCLASS_AND;
|
|
StructCopy(&accum, data->start_class,
|
|
struct regnode_charclass_class);
|
|
flags |= SCF_DO_STCLASS_OR;
|
|
data->start_class->flags |= ANYOF_EOS;
|
|
}
|
|
}
|
|
scan= tail;
|
|
continue;
|
|
}
|
|
#else
|
|
else if (PL_regkind[OP(scan)] == TRIE) {
|
|
reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
|
|
U8*bang=NULL;
|
|
|
|
min += trie->minlen;
|
|
delta += (trie->maxlen - trie->minlen);
|
|
flags &= ~SCF_DO_STCLASS; /* xxx */
|
|
if (flags & SCF_DO_SUBSTR) {
|
|
SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
|
|
data->pos_min += trie->minlen;
|
|
data->pos_delta += (trie->maxlen - trie->minlen);
|
|
if (trie->maxlen != trie->minlen)
|
|
data->longest = &(data->longest_float);
|
|
}
|
|
if (trie->jump) /* no more substrings -- for now /grr*/
|
|
flags &= ~SCF_DO_SUBSTR;
|
|
}
|
|
#endif /* old or new */
|
|
#endif /* TRIE_STUDY_OPT */
|
|
|
|
/* Else: zero-length, ignore. */
|
|
scan = regnext(scan);
|
|
}
|
|
if (frame) {
|
|
last = frame->last;
|
|
scan = frame->next;
|
|
stopparen = frame->stop;
|
|
frame = frame->prev;
|
|
goto fake_study_recurse;
|
|
}
|
|
|
|
finish:
|
|
assert(!frame);
|
|
DEBUG_STUDYDATA("pre-fin:",data,depth);
|
|
|
|
*scanp = scan;
|
|
*deltap = is_inf_internal ? I32_MAX : delta;
|
|
if (flags & SCF_DO_SUBSTR && is_inf)
|
|
data->pos_delta = I32_MAX - data->pos_min;
|
|
if (is_par > (I32)U8_MAX)
|
|
is_par = 0;
|
|
if (is_par && pars==1 && data) {
|
|
data->flags |= SF_IN_PAR;
|
|
data->flags &= ~SF_HAS_PAR;
|
|
}
|
|
else if (pars && data) {
|
|
data->flags |= SF_HAS_PAR;
|
|
data->flags &= ~SF_IN_PAR;
|
|
}
|
|
if (flags & SCF_DO_STCLASS_OR)
|
|
cl_and(data->start_class, and_withp);
|
|
if (flags & SCF_TRIE_RESTUDY)
|
|
data->flags |= SCF_TRIE_RESTUDY;
|
|
|
|
DEBUG_STUDYDATA("post-fin:",data,depth);
|
|
|
|
return min < stopmin ? min : stopmin;
|
|
}
|
|
|
|
STATIC U32
|
|
S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
|
|
{
|
|
U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
|
|
|
|
PERL_ARGS_ASSERT_ADD_DATA;
|
|
|
|
Renewc(RExC_rxi->data,
|
|
sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
|
|
char, struct reg_data);
|
|
if(count)
|
|
Renew(RExC_rxi->data->what, count + n, U8);
|
|
else
|
|
Newx(RExC_rxi->data->what, n, U8);
|
|
RExC_rxi->data->count = count + n;
|
|
Copy(s, RExC_rxi->data->what + count, n, U8);
|
|
return count;
|
|
}
|
|
|
|
/*XXX: todo make this not included in a non debugging perl */
|
|
#ifndef PERL_IN_XSUB_RE
|
|
void
|
|
Perl_reginitcolors(pTHX)
|
|
{
|
|
dVAR;
|
|
const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
|
|
if (s) {
|
|
char *t = savepv(s);
|
|
int i = 0;
|
|
PL_colors[0] = t;
|
|
while (++i < 6) {
|
|
t = strchr(t, '\t');
|
|
if (t) {
|
|
*t = '\0';
|
|
PL_colors[i] = ++t;
|
|
}
|
|
else
|
|
PL_colors[i] = t = (char *)"";
|
|
}
|
|
} else {
|
|
int i = 0;
|
|
while (i < 6)
|
|
PL_colors[i++] = (char *)"";
|
|
}
|
|
PL_colorset = 1;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef TRIE_STUDY_OPT
|
|
#define CHECK_RESTUDY_GOTO \
|
|
if ( \
|
|
(data.flags & SCF_TRIE_RESTUDY) \
|
|
&& ! restudied++ \
|
|
) goto reStudy
|
|
#else
|
|
#define CHECK_RESTUDY_GOTO
|
|
#endif
|
|
|
|
/*
|
|
- pregcomp - compile a regular expression into internal code
|
|
*
|
|
* We can't allocate space until we know how big the compiled form will be,
|
|
* but we can't compile it (and thus know how big it is) until we've got a
|
|
* place to put the code. So we cheat: we compile it twice, once with code
|
|
* generation turned off and size counting turned on, and once "for real".
|
|
* This also means that we don't allocate space until we are sure that the
|
|
* thing really will compile successfully, and we never have to move the
|
|
* code and thus invalidate pointers into it. (Note that it has to be in
|
|
* one piece because free() must be able to free it all.) [NB: not true in perl]
|
|
*
|
|
* Beware that the optimization-preparation code in here knows about some
|
|
* of the structure of the compiled regexp. [I'll say.]
|
|
*/
|
|
|
|
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
#define RE_ENGINE_PTR &PL_core_reg_engine
|
|
#else
|
|
extern const struct regexp_engine my_reg_engine;
|
|
#define RE_ENGINE_PTR &my_reg_engine
|
|
#endif
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
REGEXP *
|
|
Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
|
|
{
|
|
dVAR;
|
|
HV * const table = GvHV(PL_hintgv);
|
|
|
|
PERL_ARGS_ASSERT_PREGCOMP;
|
|
|
|
/* Dispatch a request to compile a regexp to correct
|
|
regexp engine. */
|
|
if (table) {
|
|
SV **ptr= hv_fetchs(table, "regcomp", FALSE);
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
|
|
const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
|
|
DEBUG_COMPILE_r({
|
|
PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
|
|
SvIV(*ptr));
|
|
});
|
|
return CALLREGCOMP_ENG(eng, pattern, flags);
|
|
}
|
|
}
|
|
return Perl_re_compile(aTHX_ pattern, flags);
|
|
}
|
|
#endif
|
|
|
|
REGEXP *
|
|
Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
|
|
{
|
|
dVAR;
|
|
REGEXP *rx;
|
|
struct regexp *r;
|
|
register regexp_internal *ri;
|
|
STRLEN plen;
|
|
char* VOL exp;
|
|
char* xend;
|
|
regnode *scan;
|
|
I32 flags;
|
|
I32 minlen = 0;
|
|
U32 pm_flags;
|
|
|
|
/* these are all flags - maybe they should be turned
|
|
* into a single int with different bit masks */
|
|
I32 sawlookahead = 0;
|
|
I32 sawplus = 0;
|
|
I32 sawopen = 0;
|
|
bool used_setjump = FALSE;
|
|
regex_charset initial_charset = get_regex_charset(orig_pm_flags);
|
|
|
|
U8 jump_ret = 0;
|
|
dJMPENV;
|
|
scan_data_t data;
|
|
RExC_state_t RExC_state;
|
|
RExC_state_t * const pRExC_state = &RExC_state;
|
|
#ifdef TRIE_STUDY_OPT
|
|
int restudied;
|
|
RExC_state_t copyRExC_state;
|
|
#endif
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_RE_COMPILE;
|
|
|
|
DEBUG_r(if (!PL_colorset) reginitcolors());
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
/* Initialize these here instead of as-needed, as is quick and avoids
|
|
* having to test them each time otherwise */
|
|
if (! PL_AboveLatin1) {
|
|
PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
|
|
PL_ASCII = _new_invlist_C_array(ASCII_invlist);
|
|
PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
|
|
|
|
PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
|
|
PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
|
|
|
|
PL_L1PosixAlpha = _new_invlist_C_array(L1PosixAlpha_invlist);
|
|
PL_PosixAlpha = _new_invlist_C_array(PosixAlpha_invlist);
|
|
|
|
PL_PosixBlank = _new_invlist_C_array(PosixBlank_invlist);
|
|
PL_XPosixBlank = _new_invlist_C_array(XPosixBlank_invlist);
|
|
|
|
PL_L1Cased = _new_invlist_C_array(L1Cased_invlist);
|
|
|
|
PL_PosixCntrl = _new_invlist_C_array(PosixCntrl_invlist);
|
|
PL_XPosixCntrl = _new_invlist_C_array(XPosixCntrl_invlist);
|
|
|
|
PL_PosixDigit = _new_invlist_C_array(PosixDigit_invlist);
|
|
|
|
PL_L1PosixGraph = _new_invlist_C_array(L1PosixGraph_invlist);
|
|
PL_PosixGraph = _new_invlist_C_array(PosixGraph_invlist);
|
|
|
|
PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
|
|
PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
|
|
|
|
PL_L1PosixLower = _new_invlist_C_array(L1PosixLower_invlist);
|
|
PL_PosixLower = _new_invlist_C_array(PosixLower_invlist);
|
|
|
|
PL_L1PosixPrint = _new_invlist_C_array(L1PosixPrint_invlist);
|
|
PL_PosixPrint = _new_invlist_C_array(PosixPrint_invlist);
|
|
|
|
PL_L1PosixPunct = _new_invlist_C_array(L1PosixPunct_invlist);
|
|
PL_PosixPunct = _new_invlist_C_array(PosixPunct_invlist);
|
|
|
|
PL_PerlSpace = _new_invlist_C_array(PerlSpace_invlist);
|
|
PL_XPerlSpace = _new_invlist_C_array(XPerlSpace_invlist);
|
|
|
|
PL_PosixSpace = _new_invlist_C_array(PosixSpace_invlist);
|
|
PL_XPosixSpace = _new_invlist_C_array(XPosixSpace_invlist);
|
|
|
|
PL_L1PosixUpper = _new_invlist_C_array(L1PosixUpper_invlist);
|
|
PL_PosixUpper = _new_invlist_C_array(PosixUpper_invlist);
|
|
|
|
PL_VertSpace = _new_invlist_C_array(VertSpace_invlist);
|
|
|
|
PL_PosixWord = _new_invlist_C_array(PosixWord_invlist);
|
|
PL_L1PosixWord = _new_invlist_C_array(L1PosixWord_invlist);
|
|
|
|
PL_PosixXDigit = _new_invlist_C_array(PosixXDigit_invlist);
|
|
PL_XPosixXDigit = _new_invlist_C_array(XPosixXDigit_invlist);
|
|
}
|
|
#endif
|
|
|
|
exp = SvPV(pattern, plen);
|
|
|
|
if (plen == 0) { /* ignore the utf8ness if the pattern is 0 length */
|
|
RExC_utf8 = RExC_orig_utf8 = 0;
|
|
}
|
|
else {
|
|
RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
|
|
}
|
|
RExC_uni_semantics = 0;
|
|
RExC_contains_locale = 0;
|
|
|
|
/****************** LONG JUMP TARGET HERE***********************/
|
|
/* Longjmp back to here if have to switch in midstream to utf8 */
|
|
if (! RExC_orig_utf8) {
|
|
JMPENV_PUSH(jump_ret);
|
|
used_setjump = TRUE;
|
|
}
|
|
|
|
if (jump_ret == 0) { /* First time through */
|
|
xend = exp + plen;
|
|
|
|
DEBUG_COMPILE_r({
|
|
SV *dsv= sv_newmortal();
|
|
RE_PV_QUOTED_DECL(s, RExC_utf8,
|
|
dsv, exp, plen, 60);
|
|
PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
|
|
PL_colors[4],PL_colors[5],s);
|
|
});
|
|
}
|
|
else { /* longjumped back */
|
|
STRLEN len = plen;
|
|
|
|
/* If the cause for the longjmp was other than changing to utf8, pop
|
|
* our own setjmp, and longjmp to the correct handler */
|
|
if (jump_ret != UTF8_LONGJMP) {
|
|
JMPENV_POP;
|
|
JMPENV_JUMP(jump_ret);
|
|
}
|
|
|
|
GET_RE_DEBUG_FLAGS;
|
|
|
|
/* It's possible to write a regexp in ascii that represents Unicode
|
|
codepoints outside of the byte range, such as via \x{100}. If we
|
|
detect such a sequence we have to convert the entire pattern to utf8
|
|
and then recompile, as our sizing calculation will have been based
|
|
on 1 byte == 1 character, but we will need to use utf8 to encode
|
|
at least some part of the pattern, and therefore must convert the whole
|
|
thing.
|
|
-- dmq */
|
|
DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
|
|
"UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
|
|
exp = (char*)Perl_bytes_to_utf8(aTHX_
|
|
(U8*)SvPV_nomg(pattern, plen),
|
|
&len);
|
|
xend = exp + len;
|
|
RExC_orig_utf8 = RExC_utf8 = 1;
|
|
SAVEFREEPV(exp);
|
|
}
|
|
|
|
#ifdef TRIE_STUDY_OPT
|
|
restudied = 0;
|
|
#endif
|
|
|
|
pm_flags = orig_pm_flags;
|
|
|
|
if (initial_charset == REGEX_LOCALE_CHARSET) {
|
|
RExC_contains_locale = 1;
|
|
}
|
|
else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
|
|
|
|
/* Set to use unicode semantics if the pattern is in utf8 and has the
|
|
* 'depends' charset specified, as it means unicode when utf8 */
|
|
set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
|
|
}
|
|
|
|
RExC_precomp = exp;
|
|
RExC_flags = pm_flags;
|
|
RExC_sawback = 0;
|
|
|
|
RExC_seen = 0;
|
|
RExC_in_lookbehind = 0;
|
|
RExC_seen_zerolen = *exp == '^' ? -1 : 0;
|
|
RExC_seen_evals = 0;
|
|
RExC_extralen = 0;
|
|
RExC_override_recoding = 0;
|
|
|
|
/* First pass: determine size, legality. */
|
|
RExC_parse = exp;
|
|
RExC_start = exp;
|
|
RExC_end = xend;
|
|
RExC_naughty = 0;
|
|
RExC_npar = 1;
|
|
RExC_nestroot = 0;
|
|
RExC_size = 0L;
|
|
RExC_emit = &PL_regdummy;
|
|
RExC_whilem_seen = 0;
|
|
RExC_open_parens = NULL;
|
|
RExC_close_parens = NULL;
|
|
RExC_opend = NULL;
|
|
RExC_paren_names = NULL;
|
|
#ifdef DEBUGGING
|
|
RExC_paren_name_list = NULL;
|
|
#endif
|
|
RExC_recurse = NULL;
|
|
RExC_recurse_count = 0;
|
|
|
|
#if 0 /* REGC() is (currently) a NOP at the first pass.
|
|
* Clever compilers notice this and complain. --jhi */
|
|
REGC((U8)REG_MAGIC, (char*)RExC_emit);
|
|
#endif
|
|
DEBUG_PARSE_r(
|
|
PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
|
|
RExC_lastnum=0;
|
|
RExC_lastparse=NULL;
|
|
);
|
|
if (reg(pRExC_state, 0, &flags,1) == NULL) {
|
|
RExC_precomp = NULL;
|
|
return(NULL);
|
|
}
|
|
|
|
/* Here, finished first pass. Get rid of any added setjmp */
|
|
if (used_setjump) {
|
|
JMPENV_POP;
|
|
}
|
|
|
|
DEBUG_PARSE_r({
|
|
PerlIO_printf(Perl_debug_log,
|
|
"Required size %"IVdf" nodes\n"
|
|
"Starting second pass (creation)\n",
|
|
(IV)RExC_size);
|
|
RExC_lastnum=0;
|
|
RExC_lastparse=NULL;
|
|
});
|
|
|
|
/* The first pass could have found things that force Unicode semantics */
|
|
if ((RExC_utf8 || RExC_uni_semantics)
|
|
&& get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
|
|
{
|
|
set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
|
|
}
|
|
|
|
/* Small enough for pointer-storage convention?
|
|
If extralen==0, this means that we will not need long jumps. */
|
|
if (RExC_size >= 0x10000L && RExC_extralen)
|
|
RExC_size += RExC_extralen;
|
|
else
|
|
RExC_extralen = 0;
|
|
if (RExC_whilem_seen > 15)
|
|
RExC_whilem_seen = 15;
|
|
|
|
/* Allocate space and zero-initialize. Note, the two step process
|
|
of zeroing when in debug mode, thus anything assigned has to
|
|
happen after that */
|
|
rx = (REGEXP*) newSV_type(SVt_REGEXP);
|
|
r = (struct regexp*)SvANY(rx);
|
|
Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
|
|
char, regexp_internal);
|
|
if ( r == NULL || ri == NULL )
|
|
FAIL("Regexp out of space");
|
|
#ifdef DEBUGGING
|
|
/* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
|
|
Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
|
|
#else
|
|
/* bulk initialize base fields with 0. */
|
|
Zero(ri, sizeof(regexp_internal), char);
|
|
#endif
|
|
|
|
/* non-zero initialization begins here */
|
|
RXi_SET( r, ri );
|
|
r->engine= RE_ENGINE_PTR;
|
|
r->extflags = pm_flags;
|
|
{
|
|
bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
|
|
bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
|
|
|
|
/* The caret is output if there are any defaults: if not all the STD
|
|
* flags are set, or if no character set specifier is needed */
|
|
bool has_default =
|
|
(((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
|
|
|| ! has_charset);
|
|
bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
|
|
U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
|
|
>> RXf_PMf_STD_PMMOD_SHIFT);
|
|
const char *fptr = STD_PAT_MODS; /*"msix"*/
|
|
char *p;
|
|
/* Allocate for the worst case, which is all the std flags are turned
|
|
* on. If more precision is desired, we could do a population count of
|
|
* the flags set. This could be done with a small lookup table, or by
|
|
* shifting, masking and adding, or even, when available, assembly
|
|
* language for a machine-language population count.
|
|
* We never output a minus, as all those are defaults, so are
|
|
* covered by the caret */
|
|
const STRLEN wraplen = plen + has_p + has_runon
|
|
+ has_default /* If needs a caret */
|
|
|
|
/* If needs a character set specifier */
|
|
+ ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
|
|
+ (sizeof(STD_PAT_MODS) - 1)
|
|
+ (sizeof("(?:)") - 1);
|
|
|
|
p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
|
|
SvPOK_on(rx);
|
|
SvFLAGS(rx) |= SvUTF8(pattern);
|
|
*p++='('; *p++='?';
|
|
|
|
/* If a default, cover it using the caret */
|
|
if (has_default) {
|
|
*p++= DEFAULT_PAT_MOD;
|
|
}
|
|
if (has_charset) {
|
|
STRLEN len;
|
|
const char* const name = get_regex_charset_name(r->extflags, &len);
|
|
Copy(name, p, len, char);
|
|
p += len;
|
|
}
|
|
if (has_p)
|
|
*p++ = KEEPCOPY_PAT_MOD; /*'p'*/
|
|
{
|
|
char ch;
|
|
while((ch = *fptr++)) {
|
|
if(reganch & 1)
|
|
*p++ = ch;
|
|
reganch >>= 1;
|
|
}
|
|
}
|
|
|
|
*p++ = ':';
|
|
Copy(RExC_precomp, p, plen, char);
|
|
assert ((RX_WRAPPED(rx) - p) < 16);
|
|
r->pre_prefix = p - RX_WRAPPED(rx);
|
|
p += plen;
|
|
if (has_runon)
|
|
*p++ = '\n';
|
|
*p++ = ')';
|
|
*p = 0;
|
|
SvCUR_set(rx, p - SvPVX_const(rx));
|
|
}
|
|
|
|
r->intflags = 0;
|
|
r->nparens = RExC_npar - 1; /* set early to validate backrefs */
|
|
|
|
if (RExC_seen & REG_SEEN_RECURSE) {
|
|
Newxz(RExC_open_parens, RExC_npar,regnode *);
|
|
SAVEFREEPV(RExC_open_parens);
|
|
Newxz(RExC_close_parens,RExC_npar,regnode *);
|
|
SAVEFREEPV(RExC_close_parens);
|
|
}
|
|
|
|
/* Useful during FAIL. */
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
|
|
DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
|
|
"%s %"UVuf" bytes for offset annotations.\n",
|
|
ri->u.offsets ? "Got" : "Couldn't get",
|
|
(UV)((2*RExC_size+1) * sizeof(U32))));
|
|
#endif
|
|
SetProgLen(ri,RExC_size);
|
|
RExC_rx_sv = rx;
|
|
RExC_rx = r;
|
|
RExC_rxi = ri;
|
|
|
|
/* Second pass: emit code. */
|
|
RExC_flags = pm_flags; /* don't let top level (?i) bleed */
|
|
RExC_parse = exp;
|
|
RExC_end = xend;
|
|
RExC_naughty = 0;
|
|
RExC_npar = 1;
|
|
RExC_emit_start = ri->program;
|
|
RExC_emit = ri->program;
|
|
RExC_emit_bound = ri->program + RExC_size + 1;
|
|
|
|
/* Store the count of eval-groups for security checks: */
|
|
RExC_rx->seen_evals = RExC_seen_evals;
|
|
REGC((U8)REG_MAGIC, (char*) RExC_emit++);
|
|
if (reg(pRExC_state, 0, &flags,1) == NULL) {
|
|
ReREFCNT_dec(rx);
|
|
return(NULL);
|
|
}
|
|
/* XXXX To minimize changes to RE engine we always allocate
|
|
3-units-long substrs field. */
|
|
Newx(r->substrs, 1, struct reg_substr_data);
|
|
if (RExC_recurse_count) {
|
|
Newxz(RExC_recurse,RExC_recurse_count,regnode *);
|
|
SAVEFREEPV(RExC_recurse);
|
|
}
|
|
|
|
reStudy:
|
|
r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
|
|
Zero(r->substrs, 1, struct reg_substr_data);
|
|
|
|
#ifdef TRIE_STUDY_OPT
|
|
if (!restudied) {
|
|
StructCopy(&zero_scan_data, &data, scan_data_t);
|
|
copyRExC_state = RExC_state;
|
|
} else {
|
|
U32 seen=RExC_seen;
|
|
DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
|
|
|
|
RExC_state = copyRExC_state;
|
|
if (seen & REG_TOP_LEVEL_BRANCHES)
|
|
RExC_seen |= REG_TOP_LEVEL_BRANCHES;
|
|
else
|
|
RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
|
|
if (data.last_found) {
|
|
SvREFCNT_dec(data.longest_fixed);
|
|
SvREFCNT_dec(data.longest_float);
|
|
SvREFCNT_dec(data.last_found);
|
|
}
|
|
StructCopy(&zero_scan_data, &data, scan_data_t);
|
|
}
|
|
#else
|
|
StructCopy(&zero_scan_data, &data, scan_data_t);
|
|
#endif
|
|
|
|
/* Dig out information for optimizations. */
|
|
r->extflags = RExC_flags; /* was pm_op */
|
|
/*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
|
|
|
|
if (UTF)
|
|
SvUTF8_on(rx); /* Unicode in it? */
|
|
ri->regstclass = NULL;
|
|
if (RExC_naughty >= 10) /* Probably an expensive pattern. */
|
|
r->intflags |= PREGf_NAUGHTY;
|
|
scan = ri->program + 1; /* First BRANCH. */
|
|
|
|
/* testing for BRANCH here tells us whether there is "must appear"
|
|
data in the pattern. If there is then we can use it for optimisations */
|
|
if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
|
|
I32 fake;
|
|
STRLEN longest_float_length, longest_fixed_length;
|
|
struct regnode_charclass_class ch_class; /* pointed to by data */
|
|
int stclass_flag;
|
|
I32 last_close = 0; /* pointed to by data */
|
|
regnode *first= scan;
|
|
regnode *first_next= regnext(first);
|
|
/*
|
|
* Skip introductions and multiplicators >= 1
|
|
* so that we can extract the 'meat' of the pattern that must
|
|
* match in the large if() sequence following.
|
|
* NOTE that EXACT is NOT covered here, as it is normally
|
|
* picked up by the optimiser separately.
|
|
*
|
|
* This is unfortunate as the optimiser isnt handling lookahead
|
|
* properly currently.
|
|
*
|
|
*/
|
|
while ((OP(first) == OPEN && (sawopen = 1)) ||
|
|
/* An OR of *one* alternative - should not happen now. */
|
|
(OP(first) == BRANCH && OP(first_next) != BRANCH) ||
|
|
/* for now we can't handle lookbehind IFMATCH*/
|
|
(OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
|
|
(OP(first) == PLUS) ||
|
|
(OP(first) == MINMOD) ||
|
|
/* An {n,m} with n>0 */
|
|
(PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
|
|
(OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
|
|
{
|
|
/*
|
|
* the only op that could be a regnode is PLUS, all the rest
|
|
* will be regnode_1 or regnode_2.
|
|
*
|
|
*/
|
|
if (OP(first) == PLUS)
|
|
sawplus = 1;
|
|
else
|
|
first += regarglen[OP(first)];
|
|
|
|
first = NEXTOPER(first);
|
|
first_next= regnext(first);
|
|
}
|
|
|
|
/* Starting-point info. */
|
|
again:
|
|
DEBUG_PEEP("first:",first,0);
|
|
/* Ignore EXACT as we deal with it later. */
|
|
if (PL_regkind[OP(first)] == EXACT) {
|
|
if (OP(first) == EXACT)
|
|
NOOP; /* Empty, get anchored substr later. */
|
|
else
|
|
ri->regstclass = first;
|
|
}
|
|
#ifdef TRIE_STCLASS
|
|
else if (PL_regkind[OP(first)] == TRIE &&
|
|
((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
|
|
{
|
|
regnode *trie_op;
|
|
/* this can happen only on restudy */
|
|
if ( OP(first) == TRIE ) {
|
|
struct regnode_1 *trieop = (struct regnode_1 *)
|
|
PerlMemShared_calloc(1, sizeof(struct regnode_1));
|
|
StructCopy(first,trieop,struct regnode_1);
|
|
trie_op=(regnode *)trieop;
|
|
} else {
|
|
struct regnode_charclass *trieop = (struct regnode_charclass *)
|
|
PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
|
|
StructCopy(first,trieop,struct regnode_charclass);
|
|
trie_op=(regnode *)trieop;
|
|
}
|
|
OP(trie_op)+=2;
|
|
make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
|
|
ri->regstclass = trie_op;
|
|
}
|
|
#endif
|
|
else if (REGNODE_SIMPLE(OP(first)))
|
|
ri->regstclass = first;
|
|
else if (PL_regkind[OP(first)] == BOUND ||
|
|
PL_regkind[OP(first)] == NBOUND)
|
|
ri->regstclass = first;
|
|
else if (PL_regkind[OP(first)] == BOL) {
|
|
r->extflags |= (OP(first) == MBOL
|
|
? RXf_ANCH_MBOL
|
|
: (OP(first) == SBOL
|
|
? RXf_ANCH_SBOL
|
|
: RXf_ANCH_BOL));
|
|
first = NEXTOPER(first);
|
|
goto again;
|
|
}
|
|
else if (OP(first) == GPOS) {
|
|
r->extflags |= RXf_ANCH_GPOS;
|
|
first = NEXTOPER(first);
|
|
goto again;
|
|
}
|
|
else if ((!sawopen || !RExC_sawback) &&
|
|
(OP(first) == STAR &&
|
|
PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
|
|
!(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
|
|
{
|
|
/* turn .* into ^.* with an implied $*=1 */
|
|
const int type =
|
|
(OP(NEXTOPER(first)) == REG_ANY)
|
|
? RXf_ANCH_MBOL
|
|
: RXf_ANCH_SBOL;
|
|
r->extflags |= type;
|
|
r->intflags |= PREGf_IMPLICIT;
|
|
first = NEXTOPER(first);
|
|
goto again;
|
|
}
|
|
if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
|
|
&& !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
|
|
/* x+ must match at the 1st pos of run of x's */
|
|
r->intflags |= PREGf_SKIP;
|
|
|
|
/* Scan is after the zeroth branch, first is atomic matcher. */
|
|
#ifdef TRIE_STUDY_OPT
|
|
DEBUG_PARSE_r(
|
|
if (!restudied)
|
|
PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
|
|
(IV)(first - scan + 1))
|
|
);
|
|
#else
|
|
DEBUG_PARSE_r(
|
|
PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
|
|
(IV)(first - scan + 1))
|
|
);
|
|
#endif
|
|
|
|
|
|
/*
|
|
* If there's something expensive in the r.e., find the
|
|
* longest literal string that must appear and make it the
|
|
* regmust. Resolve ties in favor of later strings, since
|
|
* the regstart check works with the beginning of the r.e.
|
|
* and avoiding duplication strengthens checking. Not a
|
|
* strong reason, but sufficient in the absence of others.
|
|
* [Now we resolve ties in favor of the earlier string if
|
|
* it happens that c_offset_min has been invalidated, since the
|
|
* earlier string may buy us something the later one won't.]
|
|
*/
|
|
|
|
data.longest_fixed = newSVpvs("");
|
|
data.longest_float = newSVpvs("");
|
|
data.last_found = newSVpvs("");
|
|
data.longest = &(data.longest_fixed);
|
|
first = scan;
|
|
if (!ri->regstclass) {
|
|
cl_init(pRExC_state, &ch_class);
|
|
data.start_class = &ch_class;
|
|
stclass_flag = SCF_DO_STCLASS_AND;
|
|
} else /* XXXX Check for BOUND? */
|
|
stclass_flag = 0;
|
|
data.last_closep = &last_close;
|
|
|
|
minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
|
|
&data, -1, NULL, NULL,
|
|
SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
|
|
|
|
|
|
CHECK_RESTUDY_GOTO;
|
|
|
|
|
|
if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
|
|
&& data.last_start_min == 0 && data.last_end > 0
|
|
&& !RExC_seen_zerolen
|
|
&& !(RExC_seen & REG_SEEN_VERBARG)
|
|
&& (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
|
|
r->extflags |= RXf_CHECK_ALL;
|
|
scan_commit(pRExC_state, &data,&minlen,0);
|
|
SvREFCNT_dec(data.last_found);
|
|
|
|
/* Note that code very similar to this but for anchored string
|
|
follows immediately below, changes may need to be made to both.
|
|
Be careful.
|
|
*/
|
|
longest_float_length = CHR_SVLEN(data.longest_float);
|
|
if (longest_float_length
|
|
|| (data.flags & SF_FL_BEFORE_EOL
|
|
&& (!(data.flags & SF_FL_BEFORE_MEOL)
|
|
|| (RExC_flags & RXf_PMf_MULTILINE))))
|
|
{
|
|
I32 t,ml;
|
|
|
|
/* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
|
|
if ((RExC_seen & REG_SEEN_EXACTF_SHARP_S)
|
|
|| (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
|
|
&& data.offset_fixed == data.offset_float_min
|
|
&& SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
|
|
goto remove_float; /* As in (a)+. */
|
|
|
|
/* copy the information about the longest float from the reg_scan_data
|
|
over to the program. */
|
|
if (SvUTF8(data.longest_float)) {
|
|
r->float_utf8 = data.longest_float;
|
|
r->float_substr = NULL;
|
|
} else {
|
|
r->float_substr = data.longest_float;
|
|
r->float_utf8 = NULL;
|
|
}
|
|
/* float_end_shift is how many chars that must be matched that
|
|
follow this item. We calculate it ahead of time as once the
|
|
lookbehind offset is added in we lose the ability to correctly
|
|
calculate it.*/
|
|
ml = data.minlen_float ? *(data.minlen_float)
|
|
: (I32)longest_float_length;
|
|
r->float_end_shift = ml - data.offset_float_min
|
|
- longest_float_length + (SvTAIL(data.longest_float) != 0)
|
|
+ data.lookbehind_float;
|
|
r->float_min_offset = data.offset_float_min - data.lookbehind_float;
|
|
r->float_max_offset = data.offset_float_max;
|
|
if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
|
|
r->float_max_offset -= data.lookbehind_float;
|
|
|
|
t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
|
|
&& (!(data.flags & SF_FL_BEFORE_MEOL)
|
|
|| (RExC_flags & RXf_PMf_MULTILINE)));
|
|
fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
|
|
}
|
|
else {
|
|
remove_float:
|
|
r->float_substr = r->float_utf8 = NULL;
|
|
SvREFCNT_dec(data.longest_float);
|
|
longest_float_length = 0;
|
|
}
|
|
|
|
/* Note that code very similar to this but for floating string
|
|
is immediately above, changes may need to be made to both.
|
|
Be careful.
|
|
*/
|
|
longest_fixed_length = CHR_SVLEN(data.longest_fixed);
|
|
|
|
/* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
|
|
if (! (RExC_seen & REG_SEEN_EXACTF_SHARP_S)
|
|
&& (longest_fixed_length
|
|
|| (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
|
|
&& (!(data.flags & SF_FIX_BEFORE_MEOL)
|
|
|| (RExC_flags & RXf_PMf_MULTILINE)))) )
|
|
{
|
|
I32 t,ml;
|
|
|
|
/* copy the information about the longest fixed
|
|
from the reg_scan_data over to the program. */
|
|
if (SvUTF8(data.longest_fixed)) {
|
|
r->anchored_utf8 = data.longest_fixed;
|
|
r->anchored_substr = NULL;
|
|
} else {
|
|
r->anchored_substr = data.longest_fixed;
|
|
r->anchored_utf8 = NULL;
|
|
}
|
|
/* fixed_end_shift is how many chars that must be matched that
|
|
follow this item. We calculate it ahead of time as once the
|
|
lookbehind offset is added in we lose the ability to correctly
|
|
calculate it.*/
|
|
ml = data.minlen_fixed ? *(data.minlen_fixed)
|
|
: (I32)longest_fixed_length;
|
|
r->anchored_end_shift = ml - data.offset_fixed
|
|
- longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
|
|
+ data.lookbehind_fixed;
|
|
r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
|
|
|
|
t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
|
|
&& (!(data.flags & SF_FIX_BEFORE_MEOL)
|
|
|| (RExC_flags & RXf_PMf_MULTILINE)));
|
|
fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
|
|
}
|
|
else {
|
|
r->anchored_substr = r->anchored_utf8 = NULL;
|
|
SvREFCNT_dec(data.longest_fixed);
|
|
longest_fixed_length = 0;
|
|
}
|
|
if (ri->regstclass
|
|
&& (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
|
|
ri->regstclass = NULL;
|
|
|
|
if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
|
|
&& stclass_flag
|
|
&& !(data.start_class->flags & ANYOF_EOS)
|
|
&& !cl_is_anything(data.start_class))
|
|
{
|
|
const U32 n = add_data(pRExC_state, 1, "f");
|
|
data.start_class->flags |= ANYOF_IS_SYNTHETIC;
|
|
|
|
Newx(RExC_rxi->data->data[n], 1,
|
|
struct regnode_charclass_class);
|
|
StructCopy(data.start_class,
|
|
(struct regnode_charclass_class*)RExC_rxi->data->data[n],
|
|
struct regnode_charclass_class);
|
|
ri->regstclass = (regnode*)RExC_rxi->data->data[n];
|
|
r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
|
|
DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
|
|
regprop(r, sv, (regnode*)data.start_class);
|
|
PerlIO_printf(Perl_debug_log,
|
|
"synthetic stclass \"%s\".\n",
|
|
SvPVX_const(sv));});
|
|
}
|
|
|
|
/* A temporary algorithm prefers floated substr to fixed one to dig more info. */
|
|
if (longest_fixed_length > longest_float_length) {
|
|
r->check_end_shift = r->anchored_end_shift;
|
|
r->check_substr = r->anchored_substr;
|
|
r->check_utf8 = r->anchored_utf8;
|
|
r->check_offset_min = r->check_offset_max = r->anchored_offset;
|
|
if (r->extflags & RXf_ANCH_SINGLE)
|
|
r->extflags |= RXf_NOSCAN;
|
|
}
|
|
else {
|
|
r->check_end_shift = r->float_end_shift;
|
|
r->check_substr = r->float_substr;
|
|
r->check_utf8 = r->float_utf8;
|
|
r->check_offset_min = r->float_min_offset;
|
|
r->check_offset_max = r->float_max_offset;
|
|
}
|
|
/* XXXX Currently intuiting is not compatible with ANCH_GPOS.
|
|
This should be changed ASAP! */
|
|
if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
|
|
r->extflags |= RXf_USE_INTUIT;
|
|
if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
|
|
r->extflags |= RXf_INTUIT_TAIL;
|
|
}
|
|
/* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
|
|
if ( (STRLEN)minlen < longest_float_length )
|
|
minlen= longest_float_length;
|
|
if ( (STRLEN)minlen < longest_fixed_length )
|
|
minlen= longest_fixed_length;
|
|
*/
|
|
}
|
|
else {
|
|
/* Several toplevels. Best we can is to set minlen. */
|
|
I32 fake;
|
|
struct regnode_charclass_class ch_class;
|
|
I32 last_close = 0;
|
|
|
|
DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
|
|
|
|
scan = ri->program + 1;
|
|
cl_init(pRExC_state, &ch_class);
|
|
data.start_class = &ch_class;
|
|
data.last_closep = &last_close;
|
|
|
|
|
|
minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
|
|
&data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
|
|
|
|
CHECK_RESTUDY_GOTO;
|
|
|
|
r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
|
|
= r->float_substr = r->float_utf8 = NULL;
|
|
|
|
if (!(data.start_class->flags & ANYOF_EOS)
|
|
&& !cl_is_anything(data.start_class))
|
|
{
|
|
const U32 n = add_data(pRExC_state, 1, "f");
|
|
data.start_class->flags |= ANYOF_IS_SYNTHETIC;
|
|
|
|
Newx(RExC_rxi->data->data[n], 1,
|
|
struct regnode_charclass_class);
|
|
StructCopy(data.start_class,
|
|
(struct regnode_charclass_class*)RExC_rxi->data->data[n],
|
|
struct regnode_charclass_class);
|
|
ri->regstclass = (regnode*)RExC_rxi->data->data[n];
|
|
r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
|
|
DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
|
|
regprop(r, sv, (regnode*)data.start_class);
|
|
PerlIO_printf(Perl_debug_log,
|
|
"synthetic stclass \"%s\".\n",
|
|
SvPVX_const(sv));});
|
|
}
|
|
}
|
|
|
|
/* Guard against an embedded (?=) or (?<=) with a longer minlen than
|
|
the "real" pattern. */
|
|
DEBUG_OPTIMISE_r({
|
|
PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
|
|
(IV)minlen, (IV)r->minlen);
|
|
});
|
|
r->minlenret = minlen;
|
|
if (r->minlen < minlen)
|
|
r->minlen = minlen;
|
|
|
|
if (RExC_seen & REG_SEEN_GPOS)
|
|
r->extflags |= RXf_GPOS_SEEN;
|
|
if (RExC_seen & REG_SEEN_LOOKBEHIND)
|
|
r->extflags |= RXf_LOOKBEHIND_SEEN;
|
|
if (RExC_seen & REG_SEEN_EVAL)
|
|
r->extflags |= RXf_EVAL_SEEN;
|
|
if (RExC_seen & REG_SEEN_CANY)
|
|
r->extflags |= RXf_CANY_SEEN;
|
|
if (RExC_seen & REG_SEEN_VERBARG)
|
|
r->intflags |= PREGf_VERBARG_SEEN;
|
|
if (RExC_seen & REG_SEEN_CUTGROUP)
|
|
r->intflags |= PREGf_CUTGROUP_SEEN;
|
|
if (RExC_paren_names)
|
|
RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
|
|
else
|
|
RXp_PAREN_NAMES(r) = NULL;
|
|
|
|
#ifdef STUPID_PATTERN_CHECKS
|
|
if (RX_PRELEN(rx) == 0)
|
|
r->extflags |= RXf_NULL;
|
|
if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
|
|
/* XXX: this should happen BEFORE we compile */
|
|
r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
|
|
else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
|
|
r->extflags |= RXf_WHITE;
|
|
else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
|
|
r->extflags |= RXf_START_ONLY;
|
|
#else
|
|
if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
|
|
/* XXX: this should happen BEFORE we compile */
|
|
r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
|
|
else {
|
|
regnode *first = ri->program + 1;
|
|
U8 fop = OP(first);
|
|
|
|
if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
|
|
r->extflags |= RXf_NULL;
|
|
else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
|
|
r->extflags |= RXf_START_ONLY;
|
|
else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
|
|
&& OP(regnext(first)) == END)
|
|
r->extflags |= RXf_WHITE;
|
|
}
|
|
#endif
|
|
#ifdef DEBUGGING
|
|
if (RExC_paren_names) {
|
|
ri->name_list_idx = add_data( pRExC_state, 1, "a" );
|
|
ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
|
|
} else
|
|
#endif
|
|
ri->name_list_idx = 0;
|
|
|
|
if (RExC_recurse_count) {
|
|
for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
|
|
const regnode *scan = RExC_recurse[RExC_recurse_count-1];
|
|
ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
|
|
}
|
|
}
|
|
Newxz(r->offs, RExC_npar, regexp_paren_pair);
|
|
/* assume we don't need to swap parens around before we match */
|
|
|
|
DEBUG_DUMP_r({
|
|
PerlIO_printf(Perl_debug_log,"Final program:\n");
|
|
regdump(r);
|
|
});
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
DEBUG_OFFSETS_r(if (ri->u.offsets) {
|
|
const U32 len = ri->u.offsets[0];
|
|
U32 i;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
|
|
for (i = 1; i <= len; i++) {
|
|
if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
|
|
PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
|
|
(UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
|
|
}
|
|
PerlIO_printf(Perl_debug_log, "\n");
|
|
});
|
|
#endif
|
|
return rx;
|
|
}
|
|
|
|
#undef RE_ENGINE_PTR
|
|
|
|
|
|
SV*
|
|
Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
|
|
const U32 flags)
|
|
{
|
|
PERL_ARGS_ASSERT_REG_NAMED_BUFF;
|
|
|
|
PERL_UNUSED_ARG(value);
|
|
|
|
if (flags & RXapif_FETCH) {
|
|
return reg_named_buff_fetch(rx, key, flags);
|
|
} else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
|
|
Perl_croak_no_modify(aTHX);
|
|
return NULL;
|
|
} else if (flags & RXapif_EXISTS) {
|
|
return reg_named_buff_exists(rx, key, flags)
|
|
? &PL_sv_yes
|
|
: &PL_sv_no;
|
|
} else if (flags & RXapif_REGNAMES) {
|
|
return reg_named_buff_all(rx, flags);
|
|
} else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
|
|
return reg_named_buff_scalar(rx, flags);
|
|
} else {
|
|
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
SV*
|
|
Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
|
|
const U32 flags)
|
|
{
|
|
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
|
|
PERL_UNUSED_ARG(lastkey);
|
|
|
|
if (flags & RXapif_FIRSTKEY)
|
|
return reg_named_buff_firstkey(rx, flags);
|
|
else if (flags & RXapif_NEXTKEY)
|
|
return reg_named_buff_nextkey(rx, flags);
|
|
else {
|
|
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
SV*
|
|
Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
|
|
const U32 flags)
|
|
{
|
|
AV *retarray = NULL;
|
|
SV *ret;
|
|
struct regexp *const rx = (struct regexp *)SvANY(r);
|
|
|
|
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
|
|
|
|
if (flags & RXapif_ALL)
|
|
retarray=newAV();
|
|
|
|
if (rx && RXp_PAREN_NAMES(rx)) {
|
|
HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
|
|
if (he_str) {
|
|
IV i;
|
|
SV* sv_dat=HeVAL(he_str);
|
|
I32 *nums=(I32*)SvPVX(sv_dat);
|
|
for ( i=0; i<SvIVX(sv_dat); i++ ) {
|
|
if ((I32)(rx->nparens) >= nums[i]
|
|
&& rx->offs[nums[i]].start != -1
|
|
&& rx->offs[nums[i]].end != -1)
|
|
{
|
|
ret = newSVpvs("");
|
|
CALLREG_NUMBUF_FETCH(r,nums[i],ret);
|
|
if (!retarray)
|
|
return ret;
|
|
} else {
|
|
if (retarray)
|
|
ret = newSVsv(&PL_sv_undef);
|
|
}
|
|
if (retarray)
|
|
av_push(retarray, ret);
|
|
}
|
|
if (retarray)
|
|
return newRV_noinc(MUTABLE_SV(retarray));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
bool
|
|
Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
|
|
const U32 flags)
|
|
{
|
|
struct regexp *const rx = (struct regexp *)SvANY(r);
|
|
|
|
PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
|
|
|
|
if (rx && RXp_PAREN_NAMES(rx)) {
|
|
if (flags & RXapif_ALL) {
|
|
return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
|
|
} else {
|
|
SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
|
|
if (sv) {
|
|
SvREFCNT_dec(sv);
|
|
return TRUE;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
SV*
|
|
Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
|
|
{
|
|
struct regexp *const rx = (struct regexp *)SvANY(r);
|
|
|
|
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
|
|
|
|
if ( rx && RXp_PAREN_NAMES(rx) ) {
|
|
(void)hv_iterinit(RXp_PAREN_NAMES(rx));
|
|
|
|
return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
SV*
|
|
Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
|
|
{
|
|
struct regexp *const rx = (struct regexp *)SvANY(r);
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
|
|
|
|
if (rx && RXp_PAREN_NAMES(rx)) {
|
|
HV *hv = RXp_PAREN_NAMES(rx);
|
|
HE *temphe;
|
|
while ( (temphe = hv_iternext_flags(hv,0)) ) {
|
|
IV i;
|
|
IV parno = 0;
|
|
SV* sv_dat = HeVAL(temphe);
|
|
I32 *nums = (I32*)SvPVX(sv_dat);
|
|
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
|
|
if ((I32)(rx->lastparen) >= nums[i] &&
|
|
rx->offs[nums[i]].start != -1 &&
|
|
rx->offs[nums[i]].end != -1)
|
|
{
|
|
parno = nums[i];
|
|
break;
|
|
}
|
|
}
|
|
if (parno || flags & RXapif_ALL) {
|
|
return newSVhek(HeKEY_hek(temphe));
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
SV*
|
|
Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
|
|
{
|
|
SV *ret;
|
|
AV *av;
|
|
I32 length;
|
|
struct regexp *const rx = (struct regexp *)SvANY(r);
|
|
|
|
PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
|
|
|
|
if (rx && RXp_PAREN_NAMES(rx)) {
|
|
if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
|
|
return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
|
|
} else if (flags & RXapif_ONE) {
|
|
ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
|
|
av = MUTABLE_AV(SvRV(ret));
|
|
length = av_len(av);
|
|
SvREFCNT_dec(ret);
|
|
return newSViv(length + 1);
|
|
} else {
|
|
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
|
|
return NULL;
|
|
}
|
|
}
|
|
return &PL_sv_undef;
|
|
}
|
|
|
|
SV*
|
|
Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
|
|
{
|
|
struct regexp *const rx = (struct regexp *)SvANY(r);
|
|
AV *av = newAV();
|
|
|
|
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
|
|
|
|
if (rx && RXp_PAREN_NAMES(rx)) {
|
|
HV *hv= RXp_PAREN_NAMES(rx);
|
|
HE *temphe;
|
|
(void)hv_iterinit(hv);
|
|
while ( (temphe = hv_iternext_flags(hv,0)) ) {
|
|
IV i;
|
|
IV parno = 0;
|
|
SV* sv_dat = HeVAL(temphe);
|
|
I32 *nums = (I32*)SvPVX(sv_dat);
|
|
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
|
|
if ((I32)(rx->lastparen) >= nums[i] &&
|
|
rx->offs[nums[i]].start != -1 &&
|
|
rx->offs[nums[i]].end != -1)
|
|
{
|
|
parno = nums[i];
|
|
break;
|
|
}
|
|
}
|
|
if (parno || flags & RXapif_ALL) {
|
|
av_push(av, newSVhek(HeKEY_hek(temphe)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return newRV_noinc(MUTABLE_SV(av));
|
|
}
|
|
|
|
void
|
|
Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
|
|
SV * const sv)
|
|
{
|
|
struct regexp *const rx = (struct regexp *)SvANY(r);
|
|
char *s = NULL;
|
|
I32 i = 0;
|
|
I32 s1, t1;
|
|
|
|
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
|
|
|
|
if (!rx->subbeg) {
|
|
sv_setsv(sv,&PL_sv_undef);
|
|
return;
|
|
}
|
|
else
|
|
if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
|
|
/* $` */
|
|
i = rx->offs[0].start;
|
|
s = rx->subbeg;
|
|
}
|
|
else
|
|
if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
|
|
/* $' */
|
|
s = rx->subbeg + rx->offs[0].end;
|
|
i = rx->sublen - rx->offs[0].end;
|
|
}
|
|
else
|
|
if ( 0 <= paren && paren <= (I32)rx->nparens &&
|
|
(s1 = rx->offs[paren].start) != -1 &&
|
|
(t1 = rx->offs[paren].end) != -1)
|
|
{
|
|
/* $& $1 ... */
|
|
i = t1 - s1;
|
|
s = rx->subbeg + s1;
|
|
} else {
|
|
sv_setsv(sv,&PL_sv_undef);
|
|
return;
|
|
}
|
|
assert(rx->sublen >= (s - rx->subbeg) + i );
|
|
if (i >= 0) {
|
|
const int oldtainted = PL_tainted;
|
|
TAINT_NOT;
|
|
sv_setpvn(sv, s, i);
|
|
PL_tainted = oldtainted;
|
|
if ( (rx->extflags & RXf_CANY_SEEN)
|
|
? (RXp_MATCH_UTF8(rx)
|
|
&& (!i || is_utf8_string((U8*)s, i)))
|
|
: (RXp_MATCH_UTF8(rx)) )
|
|
{
|
|
SvUTF8_on(sv);
|
|
}
|
|
else
|
|
SvUTF8_off(sv);
|
|
if (PL_tainting) {
|
|
if (RXp_MATCH_TAINTED(rx)) {
|
|
if (SvTYPE(sv) >= SVt_PVMG) {
|
|
MAGIC* const mg = SvMAGIC(sv);
|
|
MAGIC* mgt;
|
|
PL_tainted = 1;
|
|
SvMAGIC_set(sv, mg->mg_moremagic);
|
|
SvTAINT(sv);
|
|
if ((mgt = SvMAGIC(sv))) {
|
|
mg->mg_moremagic = mgt;
|
|
SvMAGIC_set(sv, mg);
|
|
}
|
|
} else {
|
|
PL_tainted = 1;
|
|
SvTAINT(sv);
|
|
}
|
|
} else
|
|
SvTAINTED_off(sv);
|
|
}
|
|
} else {
|
|
sv_setsv(sv,&PL_sv_undef);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void
|
|
Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
|
|
SV const * const value)
|
|
{
|
|
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
|
|
|
|
PERL_UNUSED_ARG(rx);
|
|
PERL_UNUSED_ARG(paren);
|
|
PERL_UNUSED_ARG(value);
|
|
|
|
if (!PL_localizing)
|
|
Perl_croak_no_modify(aTHX);
|
|
}
|
|
|
|
I32
|
|
Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
|
|
const I32 paren)
|
|
{
|
|
struct regexp *const rx = (struct regexp *)SvANY(r);
|
|
I32 i;
|
|
I32 s1, t1;
|
|
|
|
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
|
|
|
|
/* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
|
|
switch (paren) {
|
|
/* $` / ${^PREMATCH} */
|
|
case RX_BUFF_IDX_PREMATCH:
|
|
if (rx->offs[0].start != -1) {
|
|
i = rx->offs[0].start;
|
|
if (i > 0) {
|
|
s1 = 0;
|
|
t1 = i;
|
|
goto getlen;
|
|
}
|
|
}
|
|
return 0;
|
|
/* $' / ${^POSTMATCH} */
|
|
case RX_BUFF_IDX_POSTMATCH:
|
|
if (rx->offs[0].end != -1) {
|
|
i = rx->sublen - rx->offs[0].end;
|
|
if (i > 0) {
|
|
s1 = rx->offs[0].end;
|
|
t1 = rx->sublen;
|
|
goto getlen;
|
|
}
|
|
}
|
|
return 0;
|
|
/* $& / ${^MATCH}, $1, $2, ... */
|
|
default:
|
|
if (paren <= (I32)rx->nparens &&
|
|
(s1 = rx->offs[paren].start) != -1 &&
|
|
(t1 = rx->offs[paren].end) != -1)
|
|
{
|
|
i = t1 - s1;
|
|
goto getlen;
|
|
} else {
|
|
if (ckWARN(WARN_UNINITIALIZED))
|
|
report_uninit((const SV *)sv);
|
|
return 0;
|
|
}
|
|
}
|
|
getlen:
|
|
if (i > 0 && RXp_MATCH_UTF8(rx)) {
|
|
const char * const s = rx->subbeg + s1;
|
|
const U8 *ep;
|
|
STRLEN el;
|
|
|
|
i = t1 - s1;
|
|
if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
|
|
i = el;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
SV*
|
|
Perl_reg_qr_package(pTHX_ REGEXP * const rx)
|
|
{
|
|
PERL_ARGS_ASSERT_REG_QR_PACKAGE;
|
|
PERL_UNUSED_ARG(rx);
|
|
if (0)
|
|
return NULL;
|
|
else
|
|
return newSVpvs("Regexp");
|
|
}
|
|
|
|
/* Scans the name of a named buffer from the pattern.
|
|
* If flags is REG_RSN_RETURN_NULL returns null.
|
|
* If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
|
|
* If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
|
|
* to the parsed name as looked up in the RExC_paren_names hash.
|
|
* If there is an error throws a vFAIL().. type exception.
|
|
*/
|
|
|
|
#define REG_RSN_RETURN_NULL 0
|
|
#define REG_RSN_RETURN_NAME 1
|
|
#define REG_RSN_RETURN_DATA 2
|
|
|
|
STATIC SV*
|
|
S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
|
|
{
|
|
char *name_start = RExC_parse;
|
|
|
|
PERL_ARGS_ASSERT_REG_SCAN_NAME;
|
|
|
|
if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
|
|
/* skip IDFIRST by using do...while */
|
|
if (UTF)
|
|
do {
|
|
RExC_parse += UTF8SKIP(RExC_parse);
|
|
} while (isALNUM_utf8((U8*)RExC_parse));
|
|
else
|
|
do {
|
|
RExC_parse++;
|
|
} while (isALNUM(*RExC_parse));
|
|
}
|
|
|
|
if ( flags ) {
|
|
SV* sv_name
|
|
= newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
|
|
SVs_TEMP | (UTF ? SVf_UTF8 : 0));
|
|
if ( flags == REG_RSN_RETURN_NAME)
|
|
return sv_name;
|
|
else if (flags==REG_RSN_RETURN_DATA) {
|
|
HE *he_str = NULL;
|
|
SV *sv_dat = NULL;
|
|
if ( ! sv_name ) /* should not happen*/
|
|
Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
|
|
if (RExC_paren_names)
|
|
he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
|
|
if ( he_str )
|
|
sv_dat = HeVAL(he_str);
|
|
if ( ! sv_dat )
|
|
vFAIL("Reference to nonexistent named group");
|
|
return sv_dat;
|
|
}
|
|
else {
|
|
Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
|
|
(unsigned long) flags);
|
|
}
|
|
/* NOT REACHED */
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
|
|
int rem=(int)(RExC_end - RExC_parse); \
|
|
int cut; \
|
|
int num; \
|
|
int iscut=0; \
|
|
if (rem>10) { \
|
|
rem=10; \
|
|
iscut=1; \
|
|
} \
|
|
cut=10-rem; \
|
|
if (RExC_lastparse!=RExC_parse) \
|
|
PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
|
|
rem, RExC_parse, \
|
|
cut + 4, \
|
|
iscut ? "..." : "<" \
|
|
); \
|
|
else \
|
|
PerlIO_printf(Perl_debug_log,"%16s",""); \
|
|
\
|
|
if (SIZE_ONLY) \
|
|
num = RExC_size + 1; \
|
|
else \
|
|
num=REG_NODE_NUM(RExC_emit); \
|
|
if (RExC_lastnum!=num) \
|
|
PerlIO_printf(Perl_debug_log,"|%4d",num); \
|
|
else \
|
|
PerlIO_printf(Perl_debug_log,"|%4s",""); \
|
|
PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
|
|
(int)((depth*2)), "", \
|
|
(funcname) \
|
|
); \
|
|
RExC_lastnum=num; \
|
|
RExC_lastparse=RExC_parse; \
|
|
})
|
|
|
|
|
|
|
|
#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
|
|
DEBUG_PARSE_MSG((funcname)); \
|
|
PerlIO_printf(Perl_debug_log,"%4s","\n"); \
|
|
})
|
|
#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
|
|
DEBUG_PARSE_MSG((funcname)); \
|
|
PerlIO_printf(Perl_debug_log,fmt "\n",args); \
|
|
})
|
|
|
|
/* This section of code defines the inversion list object and its methods. The
|
|
* interfaces are highly subject to change, so as much as possible is static to
|
|
* this file. An inversion list is here implemented as a malloc'd C UV array
|
|
* with some added info that is placed as UVs at the beginning in a header
|
|
* portion. An inversion list for Unicode is an array of code points, sorted
|
|
* by ordinal number. The zeroth element is the first code point in the list.
|
|
* The 1th element is the first element beyond that not in the list. In other
|
|
* words, the first range is
|
|
* invlist[0]..(invlist[1]-1)
|
|
* The other ranges follow. Thus every element whose index is divisible by two
|
|
* marks the beginning of a range that is in the list, and every element not
|
|
* divisible by two marks the beginning of a range not in the list. A single
|
|
* element inversion list that contains the single code point N generally
|
|
* consists of two elements
|
|
* invlist[0] == N
|
|
* invlist[1] == N+1
|
|
* (The exception is when N is the highest representable value on the
|
|
* machine, in which case the list containing just it would be a single
|
|
* element, itself. By extension, if the last range in the list extends to
|
|
* infinity, then the first element of that range will be in the inversion list
|
|
* at a position that is divisible by two, and is the final element in the
|
|
* list.)
|
|
* Taking the complement (inverting) an inversion list is quite simple, if the
|
|
* first element is 0, remove it; otherwise add a 0 element at the beginning.
|
|
* This implementation reserves an element at the beginning of each inversion list
|
|
* to contain 0 when the list contains 0, and contains 1 otherwise. The actual
|
|
* beginning of the list is either that element if 0, or the next one if 1.
|
|
*
|
|
* More about inversion lists can be found in "Unicode Demystified"
|
|
* Chapter 13 by Richard Gillam, published by Addison-Wesley.
|
|
* More will be coming when functionality is added later.
|
|
*
|
|
* The inversion list data structure is currently implemented as an SV pointing
|
|
* to an array of UVs that the SV thinks are bytes. This allows us to have an
|
|
* array of UV whose memory management is automatically handled by the existing
|
|
* facilities for SV's.
|
|
*
|
|
* Some of the methods should always be private to the implementation, and some
|
|
* should eventually be made public */
|
|
|
|
#define INVLIST_LEN_OFFSET 0 /* Number of elements in the inversion list */
|
|
#define INVLIST_ITER_OFFSET 1 /* Current iteration position */
|
|
|
|
/* This is a combination of a version and data structure type, so that one
|
|
* being passed in can be validated to be an inversion list of the correct
|
|
* vintage. When the structure of the header is changed, a new random number
|
|
* in the range 2**31-1 should be generated and the new() method changed to
|
|
* insert that at this location. Then, if an auxiliary program doesn't change
|
|
* correspondingly, it will be discovered immediately */
|
|
#define INVLIST_VERSION_ID_OFFSET 2
|
|
#define INVLIST_VERSION_ID 1064334010
|
|
|
|
/* For safety, when adding new elements, remember to #undef them at the end of
|
|
* the inversion list code section */
|
|
|
|
#define INVLIST_ZERO_OFFSET 3 /* 0 or 1; must be last element in header */
|
|
/* The UV at position ZERO contains either 0 or 1. If 0, the inversion list
|
|
* contains the code point U+00000, and begins here. If 1, the inversion list
|
|
* doesn't contain U+0000, and it begins at the next UV in the array.
|
|
* Inverting an inversion list consists of adding or removing the 0 at the
|
|
* beginning of it. By reserving a space for that 0, inversion can be made
|
|
* very fast */
|
|
|
|
#define HEADER_LENGTH (INVLIST_ZERO_OFFSET + 1)
|
|
|
|
/* Internally things are UVs */
|
|
#define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
|
|
#define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
|
|
|
|
#define INVLIST_INITIAL_LEN 10
|
|
|
|
PERL_STATIC_INLINE UV*
|
|
S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
|
|
{
|
|
/* Returns a pointer to the first element in the inversion list's array.
|
|
* This is called upon initialization of an inversion list. Where the
|
|
* array begins depends on whether the list has the code point U+0000
|
|
* in it or not. The other parameter tells it whether the code that
|
|
* follows this call is about to put a 0 in the inversion list or not.
|
|
* The first element is either the element with 0, if 0, or the next one,
|
|
* if 1 */
|
|
|
|
UV* zero = get_invlist_zero_addr(invlist);
|
|
|
|
PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
|
|
|
|
/* Must be empty */
|
|
assert(! *get_invlist_len_addr(invlist));
|
|
|
|
/* 1^1 = 0; 1^0 = 1 */
|
|
*zero = 1 ^ will_have_0;
|
|
return zero + *zero;
|
|
}
|
|
|
|
PERL_STATIC_INLINE UV*
|
|
S_invlist_array(pTHX_ SV* const invlist)
|
|
{
|
|
/* Returns the pointer to the inversion list's array. Every time the
|
|
* length changes, this needs to be called in case malloc or realloc moved
|
|
* it */
|
|
|
|
PERL_ARGS_ASSERT_INVLIST_ARRAY;
|
|
|
|
/* Must not be empty. If these fail, you probably didn't check for <len>
|
|
* being non-zero before trying to get the array */
|
|
assert(*get_invlist_len_addr(invlist));
|
|
assert(*get_invlist_zero_addr(invlist) == 0
|
|
|| *get_invlist_zero_addr(invlist) == 1);
|
|
|
|
/* The array begins either at the element reserved for zero if the
|
|
* list contains 0 (that element will be set to 0), or otherwise the next
|
|
* element (in which case the reserved element will be set to 1). */
|
|
return (UV *) (get_invlist_zero_addr(invlist)
|
|
+ *get_invlist_zero_addr(invlist));
|
|
}
|
|
|
|
PERL_STATIC_INLINE UV*
|
|
S_get_invlist_len_addr(pTHX_ SV* invlist)
|
|
{
|
|
/* Return the address of the UV that contains the current number
|
|
* of used elements in the inversion list */
|
|
|
|
PERL_ARGS_ASSERT_GET_INVLIST_LEN_ADDR;
|
|
|
|
return (UV *) (SvPVX(invlist) + (INVLIST_LEN_OFFSET * sizeof (UV)));
|
|
}
|
|
|
|
PERL_STATIC_INLINE UV
|
|
S_invlist_len(pTHX_ SV* const invlist)
|
|
{
|
|
/* Returns the current number of elements stored in the inversion list's
|
|
* array */
|
|
|
|
PERL_ARGS_ASSERT_INVLIST_LEN;
|
|
|
|
return *get_invlist_len_addr(invlist);
|
|
}
|
|
|
|
PERL_STATIC_INLINE void
|
|
S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
|
|
{
|
|
/* Sets the current number of elements stored in the inversion list */
|
|
|
|
PERL_ARGS_ASSERT_INVLIST_SET_LEN;
|
|
|
|
*get_invlist_len_addr(invlist) = len;
|
|
|
|
assert(len <= SvLEN(invlist));
|
|
|
|
SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
|
|
/* If the list contains U+0000, that element is part of the header,
|
|
* and should not be counted as part of the array. It will contain
|
|
* 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
|
|
* subtract:
|
|
* SvCUR_set(invlist,
|
|
* TO_INTERNAL_SIZE(len
|
|
* - (*get_invlist_zero_addr(inv_list) ^ 1)));
|
|
* But, this is only valid if len is not 0. The consequences of not doing
|
|
* this is that the memory allocation code may think that 1 more UV is
|
|
* being used than actually is, and so might do an unnecessary grow. That
|
|
* seems worth not bothering to make this the precise amount.
|
|
*
|
|
* Note that when inverting, SvCUR shouldn't change */
|
|
}
|
|
|
|
PERL_STATIC_INLINE UV
|
|
S_invlist_max(pTHX_ SV* const invlist)
|
|
{
|
|
/* Returns the maximum number of elements storable in the inversion list's
|
|
* array, without having to realloc() */
|
|
|
|
PERL_ARGS_ASSERT_INVLIST_MAX;
|
|
|
|
return FROM_INTERNAL_SIZE(SvLEN(invlist));
|
|
}
|
|
|
|
PERL_STATIC_INLINE UV*
|
|
S_get_invlist_zero_addr(pTHX_ SV* invlist)
|
|
{
|
|
/* Return the address of the UV that is reserved to hold 0 if the inversion
|
|
* list contains 0. This has to be the last element of the heading, as the
|
|
* list proper starts with either it if 0, or the next element if not.
|
|
* (But we force it to contain either 0 or 1) */
|
|
|
|
PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
|
|
|
|
return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
|
|
}
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
SV*
|
|
Perl__new_invlist(pTHX_ IV initial_size)
|
|
{
|
|
|
|
/* Return a pointer to a newly constructed inversion list, with enough
|
|
* space to store 'initial_size' elements. If that number is negative, a
|
|
* system default is used instead */
|
|
|
|
SV* new_list;
|
|
|
|
if (initial_size < 0) {
|
|
initial_size = INVLIST_INITIAL_LEN;
|
|
}
|
|
|
|
/* Allocate the initial space */
|
|
new_list = newSV(TO_INTERNAL_SIZE(initial_size));
|
|
invlist_set_len(new_list, 0);
|
|
|
|
/* Force iterinit() to be used to get iteration to work */
|
|
*get_invlist_iter_addr(new_list) = UV_MAX;
|
|
|
|
/* This should force a segfault if a method doesn't initialize this
|
|
* properly */
|
|
*get_invlist_zero_addr(new_list) = UV_MAX;
|
|
|
|
*get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
|
|
#if HEADER_LENGTH != 4
|
|
# error Need to regenerate VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
|
|
#endif
|
|
|
|
return new_list;
|
|
}
|
|
#endif
|
|
|
|
STATIC SV*
|
|
S__new_invlist_C_array(pTHX_ UV* list)
|
|
{
|
|
/* Return a pointer to a newly constructed inversion list, initialized to
|
|
* point to <list>, which has to be in the exact correct inversion list
|
|
* form, including internal fields. Thus this is a dangerous routine that
|
|
* should not be used in the wrong hands */
|
|
|
|
SV* invlist = newSV_type(SVt_PV);
|
|
|
|
PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
|
|
|
|
SvPV_set(invlist, (char *) list);
|
|
SvLEN_set(invlist, 0); /* Means we own the contents, and the system
|
|
shouldn't touch it */
|
|
SvCUR_set(invlist, TO_INTERNAL_SIZE(invlist_len(invlist)));
|
|
|
|
if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
|
|
Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
|
|
}
|
|
|
|
return invlist;
|
|
}
|
|
|
|
STATIC void
|
|
S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
|
|
{
|
|
/* Grow the maximum size of an inversion list */
|
|
|
|
PERL_ARGS_ASSERT_INVLIST_EXTEND;
|
|
|
|
SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
|
|
}
|
|
|
|
PERL_STATIC_INLINE void
|
|
S_invlist_trim(pTHX_ SV* const invlist)
|
|
{
|
|
PERL_ARGS_ASSERT_INVLIST_TRIM;
|
|
|
|
/* Change the length of the inversion list to how many entries it currently
|
|
* has */
|
|
|
|
SvPV_shrink_to_cur((SV *) invlist);
|
|
}
|
|
|
|
/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
|
|
* etc */
|
|
#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
|
|
#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
|
|
|
|
#define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
|
|
|
|
STATIC void
|
|
S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
|
|
{
|
|
/* Subject to change or removal. Append the range from 'start' to 'end' at
|
|
* the end of the inversion list. The range must be above any existing
|
|
* ones. */
|
|
|
|
UV* array;
|
|
UV max = invlist_max(invlist);
|
|
UV len = invlist_len(invlist);
|
|
|
|
PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
|
|
|
|
if (len == 0) { /* Empty lists must be initialized */
|
|
array = _invlist_array_init(invlist, start == 0);
|
|
}
|
|
else {
|
|
/* Here, the existing list is non-empty. The current max entry in the
|
|
* list is generally the first value not in the set, except when the
|
|
* set extends to the end of permissible values, in which case it is
|
|
* the first entry in that final set, and so this call is an attempt to
|
|
* append out-of-order */
|
|
|
|
UV final_element = len - 1;
|
|
array = invlist_array(invlist);
|
|
if (array[final_element] > start
|
|
|| ELEMENT_RANGE_MATCHES_INVLIST(final_element))
|
|
{
|
|
Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
|
|
array[final_element], start,
|
|
ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
|
|
}
|
|
|
|
/* Here, it is a legal append. If the new range begins with the first
|
|
* value not in the set, it is extending the set, so the new first
|
|
* value not in the set is one greater than the newly extended range.
|
|
* */
|
|
if (array[final_element] == start) {
|
|
if (end != UV_MAX) {
|
|
array[final_element] = end + 1;
|
|
}
|
|
else {
|
|
/* But if the end is the maximum representable on the machine,
|
|
* just let the range that this would extend to have no end */
|
|
invlist_set_len(invlist, len - 1);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Here the new range doesn't extend any existing set. Add it */
|
|
|
|
len += 2; /* Includes an element each for the start and end of range */
|
|
|
|
/* If overflows the existing space, extend, which may cause the array to be
|
|
* moved */
|
|
if (max < len) {
|
|
invlist_extend(invlist, len);
|
|
invlist_set_len(invlist, len); /* Have to set len here to avoid assert
|
|
failure in invlist_array() */
|
|
array = invlist_array(invlist);
|
|
}
|
|
else {
|
|
invlist_set_len(invlist, len);
|
|
}
|
|
|
|
/* The next item on the list starts the range, the one after that is
|
|
* one past the new range. */
|
|
array[len - 2] = start;
|
|
if (end != UV_MAX) {
|
|
array[len - 1] = end + 1;
|
|
}
|
|
else {
|
|
/* But if the end is the maximum representable on the machine, just let
|
|
* the range have no end */
|
|
invlist_set_len(invlist, len - 1);
|
|
}
|
|
}
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
|
|
STATIC IV
|
|
S_invlist_search(pTHX_ SV* const invlist, const UV cp)
|
|
{
|
|
/* Searches the inversion list for the entry that contains the input code
|
|
* point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
|
|
* return value is the index into the list's array of the range that
|
|
* contains <cp> */
|
|
|
|
IV low = 0;
|
|
IV high = invlist_len(invlist);
|
|
const UV * const array = invlist_array(invlist);
|
|
|
|
PERL_ARGS_ASSERT_INVLIST_SEARCH;
|
|
|
|
/* If list is empty or the code point is before the first element, return
|
|
* failure. */
|
|
if (high == 0 || cp < array[0]) {
|
|
return -1;
|
|
}
|
|
|
|
/* Binary search. What we are looking for is <i> such that
|
|
* array[i] <= cp < array[i+1]
|
|
* The loop below converges on the i+1. */
|
|
while (low < high) {
|
|
IV mid = (low + high) / 2;
|
|
if (array[mid] <= cp) {
|
|
low = mid + 1;
|
|
|
|
/* We could do this extra test to exit the loop early.
|
|
if (cp < array[low]) {
|
|
return mid;
|
|
}
|
|
*/
|
|
}
|
|
else { /* cp < array[mid] */
|
|
high = mid;
|
|
}
|
|
}
|
|
|
|
return high - 1;
|
|
}
|
|
|
|
void
|
|
Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
|
|
{
|
|
/* populates a swatch of a swash the same way swatch_get() does in utf8.c,
|
|
* but is used when the swash has an inversion list. This makes this much
|
|
* faster, as it uses a binary search instead of a linear one. This is
|
|
* intimately tied to that function, and perhaps should be in utf8.c,
|
|
* except it is intimately tied to inversion lists as well. It assumes
|
|
* that <swatch> is all 0's on input */
|
|
|
|
UV current = start;
|
|
const IV len = invlist_len(invlist);
|
|
IV i;
|
|
const UV * array;
|
|
|
|
PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
|
|
|
|
if (len == 0) { /* Empty inversion list */
|
|
return;
|
|
}
|
|
|
|
array = invlist_array(invlist);
|
|
|
|
/* Find which element it is */
|
|
i = invlist_search(invlist, start);
|
|
|
|
/* We populate from <start> to <end> */
|
|
while (current < end) {
|
|
UV upper;
|
|
|
|
/* The inversion list gives the results for every possible code point
|
|
* after the first one in the list. Only those ranges whose index is
|
|
* even are ones that the inversion list matches. For the odd ones,
|
|
* and if the initial code point is not in the list, we have to skip
|
|
* forward to the next element */
|
|
if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
|
|
i++;
|
|
if (i >= len) { /* Finished if beyond the end of the array */
|
|
return;
|
|
}
|
|
current = array[i];
|
|
if (current >= end) { /* Finished if beyond the end of what we
|
|
are populating */
|
|
return;
|
|
}
|
|
}
|
|
assert(current >= start);
|
|
|
|
/* The current range ends one below the next one, except don't go past
|
|
* <end> */
|
|
i++;
|
|
upper = (i < len && array[i] < end) ? array[i] : end;
|
|
|
|
/* Here we are in a range that matches. Populate a bit in the 3-bit U8
|
|
* for each code point in it */
|
|
for (; current < upper; current++) {
|
|
const STRLEN offset = (STRLEN)(current - start);
|
|
swatch[offset >> 3] |= 1 << (offset & 7);
|
|
}
|
|
|
|
/* Quit if at the end of the list */
|
|
if (i >= len) {
|
|
|
|
/* But first, have to deal with the highest possible code point on
|
|
* the platform. The previous code assumes that <end> is one
|
|
* beyond where we want to populate, but that is impossible at the
|
|
* platform's infinity, so have to handle it specially */
|
|
if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
|
|
{
|
|
const STRLEN offset = (STRLEN)(end - start);
|
|
swatch[offset >> 3] |= 1 << (offset & 7);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Advance to the next range, which will be for code points not in the
|
|
* inversion list */
|
|
current = array[i];
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
void
|
|
Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
|
|
{
|
|
/* Take the union of two inversion lists and point <output> to it. *output
|
|
* should be defined upon input, and if it points to one of the two lists,
|
|
* the reference count to that list will be decremented. The first list,
|
|
* <a>, may be NULL, in which case a copy of the second list is returned.
|
|
* If <complement_b> is TRUE, the union is taken of the complement
|
|
* (inversion) of <b> instead of b itself.
|
|
*
|
|
* The basis for this comes from "Unicode Demystified" Chapter 13 by
|
|
* Richard Gillam, published by Addison-Wesley, and explained at some
|
|
* length there. The preface says to incorporate its examples into your
|
|
* code at your own risk.
|
|
*
|
|
* The algorithm is like a merge sort.
|
|
*
|
|
* XXX A potential performance improvement is to keep track as we go along
|
|
* if only one of the inputs contributes to the result, meaning the other
|
|
* is a subset of that one. In that case, we can skip the final copy and
|
|
* return the larger of the input lists, but then outside code might need
|
|
* to keep track of whether to free the input list or not */
|
|
|
|
UV* array_a; /* a's array */
|
|
UV* array_b;
|
|
UV len_a; /* length of a's array */
|
|
UV len_b;
|
|
|
|
SV* u; /* the resulting union */
|
|
UV* array_u;
|
|
UV len_u;
|
|
|
|
UV i_a = 0; /* current index into a's array */
|
|
UV i_b = 0;
|
|
UV i_u = 0;
|
|
|
|
/* running count, as explained in the algorithm source book; items are
|
|
* stopped accumulating and are output when the count changes to/from 0.
|
|
* The count is incremented when we start a range that's in the set, and
|
|
* decremented when we start a range that's not in the set. So its range
|
|
* is 0 to 2. Only when the count is zero is something not in the set.
|
|
*/
|
|
UV count = 0;
|
|
|
|
PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
|
|
assert(a != b);
|
|
|
|
/* If either one is empty, the union is the other one */
|
|
if (a == NULL || ((len_a = invlist_len(a)) == 0)) {
|
|
if (*output == a) {
|
|
if (a != NULL) {
|
|
SvREFCNT_dec(a);
|
|
}
|
|
}
|
|
if (*output != b) {
|
|
*output = invlist_clone(b);
|
|
if (complement_b) {
|
|
_invlist_invert(*output);
|
|
}
|
|
} /* else *output already = b; */
|
|
return;
|
|
}
|
|
else if ((len_b = invlist_len(b)) == 0) {
|
|
if (*output == b) {
|
|
SvREFCNT_dec(b);
|
|
}
|
|
|
|
/* The complement of an empty list is a list that has everything in it,
|
|
* so the union with <a> includes everything too */
|
|
if (complement_b) {
|
|
if (a == *output) {
|
|
SvREFCNT_dec(a);
|
|
}
|
|
*output = _new_invlist(1);
|
|
_append_range_to_invlist(*output, 0, UV_MAX);
|
|
}
|
|
else if (*output != a) {
|
|
*output = invlist_clone(a);
|
|
}
|
|
/* else *output already = a; */
|
|
return;
|
|
}
|
|
|
|
/* Here both lists exist and are non-empty */
|
|
array_a = invlist_array(a);
|
|
array_b = invlist_array(b);
|
|
|
|
/* If are to take the union of 'a' with the complement of b, set it
|
|
* up so are looking at b's complement. */
|
|
if (complement_b) {
|
|
|
|
/* To complement, we invert: if the first element is 0, remove it. To
|
|
* do this, we just pretend the array starts one later, and clear the
|
|
* flag as we don't have to do anything else later */
|
|
if (array_b[0] == 0) {
|
|
array_b++;
|
|
len_b--;
|
|
complement_b = FALSE;
|
|
}
|
|
else {
|
|
|
|
/* But if the first element is not zero, we unshift a 0 before the
|
|
* array. The data structure reserves a space for that 0 (which
|
|
* should be a '1' right now), so physical shifting is unneeded,
|
|
* but temporarily change that element to 0. Before exiting the
|
|
* routine, we must restore the element to '1' */
|
|
array_b--;
|
|
len_b++;
|
|
array_b[0] = 0;
|
|
}
|
|
}
|
|
|
|
/* Size the union for the worst case: that the sets are completely
|
|
* disjoint */
|
|
u = _new_invlist(len_a + len_b);
|
|
|
|
/* Will contain U+0000 if either component does */
|
|
array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
|
|
|| (len_b > 0 && array_b[0] == 0));
|
|
|
|
/* Go through each list item by item, stopping when exhausted one of
|
|
* them */
|
|
while (i_a < len_a && i_b < len_b) {
|
|
UV cp; /* The element to potentially add to the union's array */
|
|
bool cp_in_set; /* is it in the the input list's set or not */
|
|
|
|
/* We need to take one or the other of the two inputs for the union.
|
|
* Since we are merging two sorted lists, we take the smaller of the
|
|
* next items. In case of a tie, we take the one that is in its set
|
|
* first. If we took one not in the set first, it would decrement the
|
|
* count, possibly to 0 which would cause it to be output as ending the
|
|
* range, and the next time through we would take the same number, and
|
|
* output it again as beginning the next range. By doing it the
|
|
* opposite way, there is no possibility that the count will be
|
|
* momentarily decremented to 0, and thus the two adjoining ranges will
|
|
* be seamlessly merged. (In a tie and both are in the set or both not
|
|
* in the set, it doesn't matter which we take first.) */
|
|
if (array_a[i_a] < array_b[i_b]
|
|
|| (array_a[i_a] == array_b[i_b]
|
|
&& ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
|
|
{
|
|
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
|
|
cp= array_a[i_a++];
|
|
}
|
|
else {
|
|
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
|
|
cp= array_b[i_b++];
|
|
}
|
|
|
|
/* Here, have chosen which of the two inputs to look at. Only output
|
|
* if the running count changes to/from 0, which marks the
|
|
* beginning/end of a range in that's in the set */
|
|
if (cp_in_set) {
|
|
if (count == 0) {
|
|
array_u[i_u++] = cp;
|
|
}
|
|
count++;
|
|
}
|
|
else {
|
|
count--;
|
|
if (count == 0) {
|
|
array_u[i_u++] = cp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Here, we are finished going through at least one of the lists, which
|
|
* means there is something remaining in at most one. We check if the list
|
|
* that hasn't been exhausted is positioned such that we are in the middle
|
|
* of a range in its set or not. (i_a and i_b point to the element beyond
|
|
* the one we care about.) If in the set, we decrement 'count'; if 0, there
|
|
* is potentially more to output.
|
|
* There are four cases:
|
|
* 1) Both weren't in their sets, count is 0, and remains 0. What's left
|
|
* in the union is entirely from the non-exhausted set.
|
|
* 2) Both were in their sets, count is 2. Nothing further should
|
|
* be output, as everything that remains will be in the exhausted
|
|
* list's set, hence in the union; decrementing to 1 but not 0 insures
|
|
* that
|
|
* 3) the exhausted was in its set, non-exhausted isn't, count is 1.
|
|
* Nothing further should be output because the union includes
|
|
* everything from the exhausted set. Not decrementing ensures that.
|
|
* 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
|
|
* decrementing to 0 insures that we look at the remainder of the
|
|
* non-exhausted set */
|
|
if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
|
|
|| (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
|
|
{
|
|
count--;
|
|
}
|
|
|
|
/* The final length is what we've output so far, plus what else is about to
|
|
* be output. (If 'count' is non-zero, then the input list we exhausted
|
|
* has everything remaining up to the machine's limit in its set, and hence
|
|
* in the union, so there will be no further output. */
|
|
len_u = i_u;
|
|
if (count == 0) {
|
|
/* At most one of the subexpressions will be non-zero */
|
|
len_u += (len_a - i_a) + (len_b - i_b);
|
|
}
|
|
|
|
/* Set result to final length, which can change the pointer to array_u, so
|
|
* re-find it */
|
|
if (len_u != invlist_len(u)) {
|
|
invlist_set_len(u, len_u);
|
|
invlist_trim(u);
|
|
array_u = invlist_array(u);
|
|
}
|
|
|
|
/* When 'count' is 0, the list that was exhausted (if one was shorter than
|
|
* the other) ended with everything above it not in its set. That means
|
|
* that the remaining part of the union is precisely the same as the
|
|
* non-exhausted list, so can just copy it unchanged. (If both list were
|
|
* exhausted at the same time, then the operations below will be both 0.)
|
|
*/
|
|
if (count == 0) {
|
|
IV copy_count; /* At most one will have a non-zero copy count */
|
|
if ((copy_count = len_a - i_a) > 0) {
|
|
Copy(array_a + i_a, array_u + i_u, copy_count, UV);
|
|
}
|
|
else if ((copy_count = len_b - i_b) > 0) {
|
|
Copy(array_b + i_b, array_u + i_u, copy_count, UV);
|
|
}
|
|
}
|
|
|
|
/* We may be removing a reference to one of the inputs */
|
|
if (a == *output || b == *output) {
|
|
SvREFCNT_dec(*output);
|
|
}
|
|
|
|
/* If we've changed b, restore it */
|
|
if (complement_b) {
|
|
array_b[0] = 1;
|
|
}
|
|
|
|
*output = u;
|
|
return;
|
|
}
|
|
|
|
void
|
|
Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
|
|
{
|
|
/* Take the intersection of two inversion lists and point <i> to it. *i
|
|
* should be defined upon input, and if it points to one of the two lists,
|
|
* the reference count to that list will be decremented.
|
|
* If <complement_b> is TRUE, the result will be the intersection of <a>
|
|
* and the complement (or inversion) of <b> instead of <b> directly.
|
|
*
|
|
* The basis for this comes from "Unicode Demystified" Chapter 13 by
|
|
* Richard Gillam, published by Addison-Wesley, and explained at some
|
|
* length there. The preface says to incorporate its examples into your
|
|
* code at your own risk. In fact, it had bugs
|
|
*
|
|
* The algorithm is like a merge sort, and is essentially the same as the
|
|
* union above
|
|
*/
|
|
|
|
UV* array_a; /* a's array */
|
|
UV* array_b;
|
|
UV len_a; /* length of a's array */
|
|
UV len_b;
|
|
|
|
SV* r; /* the resulting intersection */
|
|
UV* array_r;
|
|
UV len_r;
|
|
|
|
UV i_a = 0; /* current index into a's array */
|
|
UV i_b = 0;
|
|
UV i_r = 0;
|
|
|
|
/* running count, as explained in the algorithm source book; items are
|
|
* stopped accumulating and are output when the count changes to/from 2.
|
|
* The count is incremented when we start a range that's in the set, and
|
|
* decremented when we start a range that's not in the set. So its range
|
|
* is 0 to 2. Only when the count is 2 is something in the intersection.
|
|
*/
|
|
UV count = 0;
|
|
|
|
PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
|
|
assert(a != b);
|
|
|
|
/* Special case if either one is empty */
|
|
len_a = invlist_len(a);
|
|
if ((len_a == 0) || ((len_b = invlist_len(b)) == 0)) {
|
|
|
|
if (len_a != 0 && complement_b) {
|
|
|
|
/* Here, 'a' is not empty, therefore from the above 'if', 'b' must
|
|
* be empty. Here, also we are using 'b's complement, which hence
|
|
* must be every possible code point. Thus the intersection is
|
|
* simply 'a'. */
|
|
if (*i != a) {
|
|
*i = invlist_clone(a);
|
|
|
|
if (*i == b) {
|
|
SvREFCNT_dec(b);
|
|
}
|
|
}
|
|
/* else *i is already 'a' */
|
|
return;
|
|
}
|
|
|
|
/* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
|
|
* intersection must be empty */
|
|
if (*i == a) {
|
|
SvREFCNT_dec(a);
|
|
}
|
|
else if (*i == b) {
|
|
SvREFCNT_dec(b);
|
|
}
|
|
*i = _new_invlist(0);
|
|
return;
|
|
}
|
|
|
|
/* Here both lists exist and are non-empty */
|
|
array_a = invlist_array(a);
|
|
array_b = invlist_array(b);
|
|
|
|
/* If are to take the intersection of 'a' with the complement of b, set it
|
|
* up so are looking at b's complement. */
|
|
if (complement_b) {
|
|
|
|
/* To complement, we invert: if the first element is 0, remove it. To
|
|
* do this, we just pretend the array starts one later, and clear the
|
|
* flag as we don't have to do anything else later */
|
|
if (array_b[0] == 0) {
|
|
array_b++;
|
|
len_b--;
|
|
complement_b = FALSE;
|
|
}
|
|
else {
|
|
|
|
/* But if the first element is not zero, we unshift a 0 before the
|
|
* array. The data structure reserves a space for that 0 (which
|
|
* should be a '1' right now), so physical shifting is unneeded,
|
|
* but temporarily change that element to 0. Before exiting the
|
|
* routine, we must restore the element to '1' */
|
|
array_b--;
|
|
len_b++;
|
|
array_b[0] = 0;
|
|
}
|
|
}
|
|
|
|
/* Size the intersection for the worst case: that the intersection ends up
|
|
* fragmenting everything to be completely disjoint */
|
|
r= _new_invlist(len_a + len_b);
|
|
|
|
/* Will contain U+0000 iff both components do */
|
|
array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
|
|
&& len_b > 0 && array_b[0] == 0);
|
|
|
|
/* Go through each list item by item, stopping when exhausted one of
|
|
* them */
|
|
while (i_a < len_a && i_b < len_b) {
|
|
UV cp; /* The element to potentially add to the intersection's
|
|
array */
|
|
bool cp_in_set; /* Is it in the input list's set or not */
|
|
|
|
/* We need to take one or the other of the two inputs for the
|
|
* intersection. Since we are merging two sorted lists, we take the
|
|
* smaller of the next items. In case of a tie, we take the one that
|
|
* is not in its set first (a difference from the union algorithm). If
|
|
* we took one in the set first, it would increment the count, possibly
|
|
* to 2 which would cause it to be output as starting a range in the
|
|
* intersection, and the next time through we would take that same
|
|
* number, and output it again as ending the set. By doing it the
|
|
* opposite of this, there is no possibility that the count will be
|
|
* momentarily incremented to 2. (In a tie and both are in the set or
|
|
* both not in the set, it doesn't matter which we take first.) */
|
|
if (array_a[i_a] < array_b[i_b]
|
|
|| (array_a[i_a] == array_b[i_b]
|
|
&& ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
|
|
{
|
|
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
|
|
cp= array_a[i_a++];
|
|
}
|
|
else {
|
|
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
|
|
cp= array_b[i_b++];
|
|
}
|
|
|
|
/* Here, have chosen which of the two inputs to look at. Only output
|
|
* if the running count changes to/from 2, which marks the
|
|
* beginning/end of a range that's in the intersection */
|
|
if (cp_in_set) {
|
|
count++;
|
|
if (count == 2) {
|
|
array_r[i_r++] = cp;
|
|
}
|
|
}
|
|
else {
|
|
if (count == 2) {
|
|
array_r[i_r++] = cp;
|
|
}
|
|
count--;
|
|
}
|
|
}
|
|
|
|
/* Here, we are finished going through at least one of the lists, which
|
|
* means there is something remaining in at most one. We check if the list
|
|
* that has been exhausted is positioned such that we are in the middle
|
|
* of a range in its set or not. (i_a and i_b point to elements 1 beyond
|
|
* the ones we care about.) There are four cases:
|
|
* 1) Both weren't in their sets, count is 0, and remains 0. There's
|
|
* nothing left in the intersection.
|
|
* 2) Both were in their sets, count is 2 and perhaps is incremented to
|
|
* above 2. What should be output is exactly that which is in the
|
|
* non-exhausted set, as everything it has is also in the intersection
|
|
* set, and everything it doesn't have can't be in the intersection
|
|
* 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
|
|
* gets incremented to 2. Like the previous case, the intersection is
|
|
* everything that remains in the non-exhausted set.
|
|
* 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
|
|
* remains 1. And the intersection has nothing more. */
|
|
if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
|
|
|| (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
|
|
{
|
|
count++;
|
|
}
|
|
|
|
/* The final length is what we've output so far plus what else is in the
|
|
* intersection. At most one of the subexpressions below will be non-zero */
|
|
len_r = i_r;
|
|
if (count >= 2) {
|
|
len_r += (len_a - i_a) + (len_b - i_b);
|
|
}
|
|
|
|
/* Set result to final length, which can change the pointer to array_r, so
|
|
* re-find it */
|
|
if (len_r != invlist_len(r)) {
|
|
invlist_set_len(r, len_r);
|
|
invlist_trim(r);
|
|
array_r = invlist_array(r);
|
|
}
|
|
|
|
/* Finish outputting any remaining */
|
|
if (count >= 2) { /* At most one will have a non-zero copy count */
|
|
IV copy_count;
|
|
if ((copy_count = len_a - i_a) > 0) {
|
|
Copy(array_a + i_a, array_r + i_r, copy_count, UV);
|
|
}
|
|
else if ((copy_count = len_b - i_b) > 0) {
|
|
Copy(array_b + i_b, array_r + i_r, copy_count, UV);
|
|
}
|
|
}
|
|
|
|
/* We may be removing a reference to one of the inputs */
|
|
if (a == *i || b == *i) {
|
|
SvREFCNT_dec(*i);
|
|
}
|
|
|
|
/* If we've changed b, restore it */
|
|
if (complement_b) {
|
|
array_b[0] = 1;
|
|
}
|
|
|
|
*i = r;
|
|
return;
|
|
}
|
|
|
|
SV*
|
|
Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
|
|
{
|
|
/* Add the range from 'start' to 'end' inclusive to the inversion list's
|
|
* set. A pointer to the inversion list is returned. This may actually be
|
|
* a new list, in which case the passed in one has been destroyed. The
|
|
* passed in inversion list can be NULL, in which case a new one is created
|
|
* with just the one range in it */
|
|
|
|
SV* range_invlist;
|
|
UV len;
|
|
|
|
if (invlist == NULL) {
|
|
invlist = _new_invlist(2);
|
|
len = 0;
|
|
}
|
|
else {
|
|
len = invlist_len(invlist);
|
|
}
|
|
|
|
/* If comes after the final entry, can just append it to the end */
|
|
if (len == 0
|
|
|| start >= invlist_array(invlist)
|
|
[invlist_len(invlist) - 1])
|
|
{
|
|
_append_range_to_invlist(invlist, start, end);
|
|
return invlist;
|
|
}
|
|
|
|
/* Here, can't just append things, create and return a new inversion list
|
|
* which is the union of this range and the existing inversion list */
|
|
range_invlist = _new_invlist(2);
|
|
_append_range_to_invlist(range_invlist, start, end);
|
|
|
|
_invlist_union(invlist, range_invlist, &invlist);
|
|
|
|
/* The temporary can be freed */
|
|
SvREFCNT_dec(range_invlist);
|
|
|
|
return invlist;
|
|
}
|
|
|
|
#endif
|
|
|
|
PERL_STATIC_INLINE SV*
|
|
S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
|
|
return _add_range_to_invlist(invlist, cp, cp);
|
|
}
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
void
|
|
Perl__invlist_invert(pTHX_ SV* const invlist)
|
|
{
|
|
/* Complement the input inversion list. This adds a 0 if the list didn't
|
|
* have a zero; removes it otherwise. As described above, the data
|
|
* structure is set up so that this is very efficient */
|
|
|
|
UV* len_pos = get_invlist_len_addr(invlist);
|
|
|
|
PERL_ARGS_ASSERT__INVLIST_INVERT;
|
|
|
|
/* The inverse of matching nothing is matching everything */
|
|
if (*len_pos == 0) {
|
|
_append_range_to_invlist(invlist, 0, UV_MAX);
|
|
return;
|
|
}
|
|
|
|
/* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
|
|
* zero element was a 0, so it is being removed, so the length decrements
|
|
* by 1; and vice-versa. SvCUR is unaffected */
|
|
if (*get_invlist_zero_addr(invlist) ^= 1) {
|
|
(*len_pos)--;
|
|
}
|
|
else {
|
|
(*len_pos)++;
|
|
}
|
|
}
|
|
|
|
void
|
|
Perl__invlist_invert_prop(pTHX_ SV* const invlist)
|
|
{
|
|
/* Complement the input inversion list (which must be a Unicode property,
|
|
* all of which don't match above the Unicode maximum code point.) And
|
|
* Perl has chosen to not have the inversion match above that either. This
|
|
* adds a 0x110000 if the list didn't end with it, and removes it if it did
|
|
*/
|
|
|
|
UV len;
|
|
UV* array;
|
|
|
|
PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
|
|
|
|
_invlist_invert(invlist);
|
|
|
|
len = invlist_len(invlist);
|
|
|
|
if (len != 0) { /* If empty do nothing */
|
|
array = invlist_array(invlist);
|
|
if (array[len - 1] != PERL_UNICODE_MAX + 1) {
|
|
/* Add 0x110000. First, grow if necessary */
|
|
len++;
|
|
if (invlist_max(invlist) < len) {
|
|
invlist_extend(invlist, len);
|
|
array = invlist_array(invlist);
|
|
}
|
|
invlist_set_len(invlist, len);
|
|
array[len - 1] = PERL_UNICODE_MAX + 1;
|
|
}
|
|
else { /* Remove the 0x110000 */
|
|
invlist_set_len(invlist, len - 1);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
PERL_STATIC_INLINE SV*
|
|
S_invlist_clone(pTHX_ SV* const invlist)
|
|
{
|
|
|
|
/* Return a new inversion list that is a copy of the input one, which is
|
|
* unchanged */
|
|
|
|
/* Need to allocate extra space to accommodate Perl's addition of a
|
|
* trailing NUL to SvPV's, since it thinks they are always strings */
|
|
SV* new_invlist = _new_invlist(invlist_len(invlist) + 1);
|
|
STRLEN length = SvCUR(invlist);
|
|
|
|
PERL_ARGS_ASSERT_INVLIST_CLONE;
|
|
|
|
SvCUR_set(new_invlist, length); /* This isn't done automatically */
|
|
Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
|
|
|
|
return new_invlist;
|
|
}
|
|
|
|
PERL_STATIC_INLINE UV*
|
|
S_get_invlist_iter_addr(pTHX_ SV* invlist)
|
|
{
|
|
/* Return the address of the UV that contains the current iteration
|
|
* position */
|
|
|
|
PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
|
|
|
|
return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
|
|
}
|
|
|
|
PERL_STATIC_INLINE UV*
|
|
S_get_invlist_version_id_addr(pTHX_ SV* invlist)
|
|
{
|
|
/* Return the address of the UV that contains the version id. */
|
|
|
|
PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
|
|
|
|
return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
|
|
}
|
|
|
|
PERL_STATIC_INLINE void
|
|
S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
|
|
{
|
|
PERL_ARGS_ASSERT_INVLIST_ITERINIT;
|
|
|
|
*get_invlist_iter_addr(invlist) = 0;
|
|
}
|
|
|
|
STATIC bool
|
|
S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
|
|
{
|
|
/* An C<invlist_iterinit> call on <invlist> must be used to set this up.
|
|
* This call sets in <*start> and <*end>, the next range in <invlist>.
|
|
* Returns <TRUE> if successful and the next call will return the next
|
|
* range; <FALSE> if was already at the end of the list. If the latter,
|
|
* <*start> and <*end> are unchanged, and the next call to this function
|
|
* will start over at the beginning of the list */
|
|
|
|
UV* pos = get_invlist_iter_addr(invlist);
|
|
UV len = invlist_len(invlist);
|
|
UV *array;
|
|
|
|
PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
|
|
|
|
if (*pos >= len) {
|
|
*pos = UV_MAX; /* Force iternit() to be required next time */
|
|
return FALSE;
|
|
}
|
|
|
|
array = invlist_array(invlist);
|
|
|
|
*start = array[(*pos)++];
|
|
|
|
if (*pos >= len) {
|
|
*end = UV_MAX;
|
|
}
|
|
else {
|
|
*end = array[(*pos)++] - 1;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
SV *
|
|
Perl__invlist_contents(pTHX_ SV* const invlist)
|
|
{
|
|
/* Get the contents of an inversion list into a string SV so that they can
|
|
* be printed out. It uses the format traditionally done for debug tracing
|
|
*/
|
|
|
|
UV start, end;
|
|
SV* output = newSVpvs("\n");
|
|
|
|
PERL_ARGS_ASSERT__INVLIST_CONTENTS;
|
|
|
|
invlist_iterinit(invlist);
|
|
while (invlist_iternext(invlist, &start, &end)) {
|
|
if (end == UV_MAX) {
|
|
Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
|
|
}
|
|
else if (end != start) {
|
|
Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
|
|
start, end);
|
|
}
|
|
else {
|
|
Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
|
|
}
|
|
}
|
|
|
|
return output;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
void
|
|
S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
|
|
{
|
|
/* Dumps out the ranges in an inversion list. The string 'header'
|
|
* if present is output on a line before the first range */
|
|
|
|
UV start, end;
|
|
|
|
if (header && strlen(header)) {
|
|
PerlIO_printf(Perl_debug_log, "%s\n", header);
|
|
}
|
|
invlist_iterinit(invlist);
|
|
while (invlist_iternext(invlist, &start, &end)) {
|
|
if (end == UV_MAX) {
|
|
PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
|
|
}
|
|
else {
|
|
PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#undef HEADER_LENGTH
|
|
#undef INVLIST_INITIAL_LENGTH
|
|
#undef TO_INTERNAL_SIZE
|
|
#undef FROM_INTERNAL_SIZE
|
|
#undef INVLIST_LEN_OFFSET
|
|
#undef INVLIST_ZERO_OFFSET
|
|
#undef INVLIST_ITER_OFFSET
|
|
#undef INVLIST_VERSION_ID
|
|
|
|
/* End of inversion list object */
|
|
|
|
/*
|
|
- reg - regular expression, i.e. main body or parenthesized thing
|
|
*
|
|
* Caller must absorb opening parenthesis.
|
|
*
|
|
* Combining parenthesis handling with the base level of regular expression
|
|
* is a trifle forced, but the need to tie the tails of the branches to what
|
|
* follows makes it hard to avoid.
|
|
*/
|
|
#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
|
|
#ifdef DEBUGGING
|
|
#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
|
|
#else
|
|
#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
|
|
#endif
|
|
|
|
STATIC regnode *
|
|
S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
|
|
/* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
|
|
{
|
|
dVAR;
|
|
register regnode *ret; /* Will be the head of the group. */
|
|
register regnode *br;
|
|
register regnode *lastbr;
|
|
register regnode *ender = NULL;
|
|
register I32 parno = 0;
|
|
I32 flags;
|
|
U32 oregflags = RExC_flags;
|
|
bool have_branch = 0;
|
|
bool is_open = 0;
|
|
I32 freeze_paren = 0;
|
|
I32 after_freeze = 0;
|
|
|
|
/* for (?g), (?gc), and (?o) warnings; warning
|
|
about (?c) will warn about (?g) -- japhy */
|
|
|
|
#define WASTED_O 0x01
|
|
#define WASTED_G 0x02
|
|
#define WASTED_C 0x04
|
|
#define WASTED_GC (0x02|0x04)
|
|
I32 wastedflags = 0x00;
|
|
|
|
char * parse_start = RExC_parse; /* MJD */
|
|
char * const oregcomp_parse = RExC_parse;
|
|
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REG;
|
|
DEBUG_PARSE("reg ");
|
|
|
|
*flagp = 0; /* Tentatively. */
|
|
|
|
|
|
/* Make an OPEN node, if parenthesized. */
|
|
if (paren) {
|
|
if ( *RExC_parse == '*') { /* (*VERB:ARG) */
|
|
char *start_verb = RExC_parse;
|
|
STRLEN verb_len = 0;
|
|
char *start_arg = NULL;
|
|
unsigned char op = 0;
|
|
int argok = 1;
|
|
int internal_argval = 0; /* internal_argval is only useful if !argok */
|
|
while ( *RExC_parse && *RExC_parse != ')' ) {
|
|
if ( *RExC_parse == ':' ) {
|
|
start_arg = RExC_parse + 1;
|
|
break;
|
|
}
|
|
RExC_parse++;
|
|
}
|
|
++start_verb;
|
|
verb_len = RExC_parse - start_verb;
|
|
if ( start_arg ) {
|
|
RExC_parse++;
|
|
while ( *RExC_parse && *RExC_parse != ')' )
|
|
RExC_parse++;
|
|
if ( *RExC_parse != ')' )
|
|
vFAIL("Unterminated verb pattern argument");
|
|
if ( RExC_parse == start_arg )
|
|
start_arg = NULL;
|
|
} else {
|
|
if ( *RExC_parse != ')' )
|
|
vFAIL("Unterminated verb pattern");
|
|
}
|
|
|
|
switch ( *start_verb ) {
|
|
case 'A': /* (*ACCEPT) */
|
|
if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
|
|
op = ACCEPT;
|
|
internal_argval = RExC_nestroot;
|
|
}
|
|
break;
|
|
case 'C': /* (*COMMIT) */
|
|
if ( memEQs(start_verb,verb_len,"COMMIT") )
|
|
op = COMMIT;
|
|
break;
|
|
case 'F': /* (*FAIL) */
|
|
if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
|
|
op = OPFAIL;
|
|
argok = 0;
|
|
}
|
|
break;
|
|
case ':': /* (*:NAME) */
|
|
case 'M': /* (*MARK:NAME) */
|
|
if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
|
|
op = MARKPOINT;
|
|
argok = -1;
|
|
}
|
|
break;
|
|
case 'P': /* (*PRUNE) */
|
|
if ( memEQs(start_verb,verb_len,"PRUNE") )
|
|
op = PRUNE;
|
|
break;
|
|
case 'S': /* (*SKIP) */
|
|
if ( memEQs(start_verb,verb_len,"SKIP") )
|
|
op = SKIP;
|
|
break;
|
|
case 'T': /* (*THEN) */
|
|
/* [19:06] <TimToady> :: is then */
|
|
if ( memEQs(start_verb,verb_len,"THEN") ) {
|
|
op = CUTGROUP;
|
|
RExC_seen |= REG_SEEN_CUTGROUP;
|
|
}
|
|
break;
|
|
}
|
|
if ( ! op ) {
|
|
RExC_parse++;
|
|
vFAIL3("Unknown verb pattern '%.*s'",
|
|
verb_len, start_verb);
|
|
}
|
|
if ( argok ) {
|
|
if ( start_arg && internal_argval ) {
|
|
vFAIL3("Verb pattern '%.*s' may not have an argument",
|
|
verb_len, start_verb);
|
|
} else if ( argok < 0 && !start_arg ) {
|
|
vFAIL3("Verb pattern '%.*s' has a mandatory argument",
|
|
verb_len, start_verb);
|
|
} else {
|
|
ret = reganode(pRExC_state, op, internal_argval);
|
|
if ( ! internal_argval && ! SIZE_ONLY ) {
|
|
if (start_arg) {
|
|
SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
|
|
ARG(ret) = add_data( pRExC_state, 1, "S" );
|
|
RExC_rxi->data->data[ARG(ret)]=(void*)sv;
|
|
ret->flags = 0;
|
|
} else {
|
|
ret->flags = 1;
|
|
}
|
|
}
|
|
}
|
|
if (!internal_argval)
|
|
RExC_seen |= REG_SEEN_VERBARG;
|
|
} else if ( start_arg ) {
|
|
vFAIL3("Verb pattern '%.*s' may not have an argument",
|
|
verb_len, start_verb);
|
|
} else {
|
|
ret = reg_node(pRExC_state, op);
|
|
}
|
|
nextchar(pRExC_state);
|
|
return ret;
|
|
} else
|
|
if (*RExC_parse == '?') { /* (?...) */
|
|
bool is_logical = 0;
|
|
const char * const seqstart = RExC_parse;
|
|
bool has_use_defaults = FALSE;
|
|
|
|
RExC_parse++;
|
|
paren = *RExC_parse++;
|
|
ret = NULL; /* For look-ahead/behind. */
|
|
switch (paren) {
|
|
|
|
case 'P': /* (?P...) variants for those used to PCRE/Python */
|
|
paren = *RExC_parse++;
|
|
if ( paren == '<') /* (?P<...>) named capture */
|
|
goto named_capture;
|
|
else if (paren == '>') { /* (?P>name) named recursion */
|
|
goto named_recursion;
|
|
}
|
|
else if (paren == '=') { /* (?P=...) named backref */
|
|
/* this pretty much dupes the code for \k<NAME> in regatom(), if
|
|
you change this make sure you change that */
|
|
char* name_start = RExC_parse;
|
|
U32 num = 0;
|
|
SV *sv_dat = reg_scan_name(pRExC_state,
|
|
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
|
|
if (RExC_parse == name_start || *RExC_parse != ')')
|
|
vFAIL2("Sequence %.3s... not terminated",parse_start);
|
|
|
|
if (!SIZE_ONLY) {
|
|
num = add_data( pRExC_state, 1, "S" );
|
|
RExC_rxi->data->data[num]=(void*)sv_dat;
|
|
SvREFCNT_inc_simple_void(sv_dat);
|
|
}
|
|
RExC_sawback = 1;
|
|
ret = reganode(pRExC_state,
|
|
((! FOLD)
|
|
? NREF
|
|
: (MORE_ASCII_RESTRICTED)
|
|
? NREFFA
|
|
: (AT_LEAST_UNI_SEMANTICS)
|
|
? NREFFU
|
|
: (LOC)
|
|
? NREFFL
|
|
: NREFF),
|
|
num);
|
|
*flagp |= HASWIDTH;
|
|
|
|
Set_Node_Offset(ret, parse_start+1);
|
|
Set_Node_Cur_Length(ret); /* MJD */
|
|
|
|
nextchar(pRExC_state);
|
|
return ret;
|
|
}
|
|
RExC_parse++;
|
|
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
|
|
/*NOTREACHED*/
|
|
case '<': /* (?<...) */
|
|
if (*RExC_parse == '!')
|
|
paren = ',';
|
|
else if (*RExC_parse != '=')
|
|
named_capture:
|
|
{ /* (?<...>) */
|
|
char *name_start;
|
|
SV *svname;
|
|
paren= '>';
|
|
case '\'': /* (?'...') */
|
|
name_start= RExC_parse;
|
|
svname = reg_scan_name(pRExC_state,
|
|
SIZE_ONLY ? /* reverse test from the others */
|
|
REG_RSN_RETURN_NAME :
|
|
REG_RSN_RETURN_NULL);
|
|
if (RExC_parse == name_start) {
|
|
RExC_parse++;
|
|
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
|
|
/*NOTREACHED*/
|
|
}
|
|
if (*RExC_parse != paren)
|
|
vFAIL2("Sequence (?%c... not terminated",
|
|
paren=='>' ? '<' : paren);
|
|
if (SIZE_ONLY) {
|
|
HE *he_str;
|
|
SV *sv_dat = NULL;
|
|
if (!svname) /* shouldn't happen */
|
|
Perl_croak(aTHX_
|
|
"panic: reg_scan_name returned NULL");
|
|
if (!RExC_paren_names) {
|
|
RExC_paren_names= newHV();
|
|
sv_2mortal(MUTABLE_SV(RExC_paren_names));
|
|
#ifdef DEBUGGING
|
|
RExC_paren_name_list= newAV();
|
|
sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
|
|
#endif
|
|
}
|
|
he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
|
|
if ( he_str )
|
|
sv_dat = HeVAL(he_str);
|
|
if ( ! sv_dat ) {
|
|
/* croak baby croak */
|
|
Perl_croak(aTHX_
|
|
"panic: paren_name hash element allocation failed");
|
|
} else if ( SvPOK(sv_dat) ) {
|
|
/* (?|...) can mean we have dupes so scan to check
|
|
its already been stored. Maybe a flag indicating
|
|
we are inside such a construct would be useful,
|
|
but the arrays are likely to be quite small, so
|
|
for now we punt -- dmq */
|
|
IV count = SvIV(sv_dat);
|
|
I32 *pv = (I32*)SvPVX(sv_dat);
|
|
IV i;
|
|
for ( i = 0 ; i < count ; i++ ) {
|
|
if ( pv[i] == RExC_npar ) {
|
|
count = 0;
|
|
break;
|
|
}
|
|
}
|
|
if ( count ) {
|
|
pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
|
|
SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
|
|
pv[count] = RExC_npar;
|
|
SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
|
|
}
|
|
} else {
|
|
(void)SvUPGRADE(sv_dat,SVt_PVNV);
|
|
sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
|
|
SvIOK_on(sv_dat);
|
|
SvIV_set(sv_dat, 1);
|
|
}
|
|
#ifdef DEBUGGING
|
|
/* Yes this does cause a memory leak in debugging Perls */
|
|
if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
|
|
SvREFCNT_dec(svname);
|
|
#endif
|
|
|
|
/*sv_dump(sv_dat);*/
|
|
}
|
|
nextchar(pRExC_state);
|
|
paren = 1;
|
|
goto capturing_parens;
|
|
}
|
|
RExC_seen |= REG_SEEN_LOOKBEHIND;
|
|
RExC_in_lookbehind++;
|
|
RExC_parse++;
|
|
case '=': /* (?=...) */
|
|
RExC_seen_zerolen++;
|
|
break;
|
|
case '!': /* (?!...) */
|
|
RExC_seen_zerolen++;
|
|
if (*RExC_parse == ')') {
|
|
ret=reg_node(pRExC_state, OPFAIL);
|
|
nextchar(pRExC_state);
|
|
return ret;
|
|
}
|
|
break;
|
|
case '|': /* (?|...) */
|
|
/* branch reset, behave like a (?:...) except that
|
|
buffers in alternations share the same numbers */
|
|
paren = ':';
|
|
after_freeze = freeze_paren = RExC_npar;
|
|
break;
|
|
case ':': /* (?:...) */
|
|
case '>': /* (?>...) */
|
|
break;
|
|
case '$': /* (?$...) */
|
|
case '@': /* (?@...) */
|
|
vFAIL2("Sequence (?%c...) not implemented", (int)paren);
|
|
break;
|
|
case '#': /* (?#...) */
|
|
while (*RExC_parse && *RExC_parse != ')')
|
|
RExC_parse++;
|
|
if (*RExC_parse != ')')
|
|
FAIL("Sequence (?#... not terminated");
|
|
nextchar(pRExC_state);
|
|
*flagp = TRYAGAIN;
|
|
return NULL;
|
|
case '0' : /* (?0) */
|
|
case 'R' : /* (?R) */
|
|
if (*RExC_parse != ')')
|
|
FAIL("Sequence (?R) not terminated");
|
|
ret = reg_node(pRExC_state, GOSTART);
|
|
*flagp |= POSTPONED;
|
|
nextchar(pRExC_state);
|
|
return ret;
|
|
/*notreached*/
|
|
{ /* named and numeric backreferences */
|
|
I32 num;
|
|
case '&': /* (?&NAME) */
|
|
parse_start = RExC_parse - 1;
|
|
named_recursion:
|
|
{
|
|
SV *sv_dat = reg_scan_name(pRExC_state,
|
|
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
|
|
num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
|
|
}
|
|
goto gen_recurse_regop;
|
|
/* NOT REACHED */
|
|
case '+':
|
|
if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
|
|
RExC_parse++;
|
|
vFAIL("Illegal pattern");
|
|
}
|
|
goto parse_recursion;
|
|
/* NOT REACHED*/
|
|
case '-': /* (?-1) */
|
|
if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
|
|
RExC_parse--; /* rewind to let it be handled later */
|
|
goto parse_flags;
|
|
}
|
|
/*FALLTHROUGH */
|
|
case '1': case '2': case '3': case '4': /* (?1) */
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
RExC_parse--;
|
|
parse_recursion:
|
|
num = atoi(RExC_parse);
|
|
parse_start = RExC_parse - 1; /* MJD */
|
|
if (*RExC_parse == '-')
|
|
RExC_parse++;
|
|
while (isDIGIT(*RExC_parse))
|
|
RExC_parse++;
|
|
if (*RExC_parse!=')')
|
|
vFAIL("Expecting close bracket");
|
|
|
|
gen_recurse_regop:
|
|
if ( paren == '-' ) {
|
|
/*
|
|
Diagram of capture buffer numbering.
|
|
Top line is the normal capture buffer numbers
|
|
Bottom line is the negative indexing as from
|
|
the X (the (?-2))
|
|
|
|
+ 1 2 3 4 5 X 6 7
|
|
/(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
|
|
- 5 4 3 2 1 X x x
|
|
|
|
*/
|
|
num = RExC_npar + num;
|
|
if (num < 1) {
|
|
RExC_parse++;
|
|
vFAIL("Reference to nonexistent group");
|
|
}
|
|
} else if ( paren == '+' ) {
|
|
num = RExC_npar + num - 1;
|
|
}
|
|
|
|
ret = reganode(pRExC_state, GOSUB, num);
|
|
if (!SIZE_ONLY) {
|
|
if (num > (I32)RExC_rx->nparens) {
|
|
RExC_parse++;
|
|
vFAIL("Reference to nonexistent group");
|
|
}
|
|
ARG2L_SET( ret, RExC_recurse_count++);
|
|
RExC_emit++;
|
|
DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
|
|
"Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
|
|
} else {
|
|
RExC_size++;
|
|
}
|
|
RExC_seen |= REG_SEEN_RECURSE;
|
|
Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
|
|
Set_Node_Offset(ret, parse_start); /* MJD */
|
|
|
|
*flagp |= POSTPONED;
|
|
nextchar(pRExC_state);
|
|
return ret;
|
|
} /* named and numeric backreferences */
|
|
/* NOT REACHED */
|
|
|
|
case '?': /* (??...) */
|
|
is_logical = 1;
|
|
if (*RExC_parse != '{') {
|
|
RExC_parse++;
|
|
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
|
|
/*NOTREACHED*/
|
|
}
|
|
*flagp |= POSTPONED;
|
|
paren = *RExC_parse++;
|
|
/* FALL THROUGH */
|
|
case '{': /* (?{...}) */
|
|
{
|
|
I32 count = 1;
|
|
U32 n = 0;
|
|
char c;
|
|
char *s = RExC_parse;
|
|
|
|
RExC_seen_zerolen++;
|
|
RExC_seen |= REG_SEEN_EVAL;
|
|
while (count && (c = *RExC_parse)) {
|
|
if (c == '\\') {
|
|
if (RExC_parse[1])
|
|
RExC_parse++;
|
|
}
|
|
else if (c == '{')
|
|
count++;
|
|
else if (c == '}')
|
|
count--;
|
|
RExC_parse++;
|
|
}
|
|
if (*RExC_parse != ')') {
|
|
RExC_parse = s;
|
|
vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
|
|
}
|
|
if (!SIZE_ONLY) {
|
|
PAD *pad;
|
|
OP_4tree *sop, *rop;
|
|
SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
|
|
|
|
ENTER;
|
|
Perl_save_re_context(aTHX);
|
|
rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
|
|
sop->op_private |= OPpREFCOUNTED;
|
|
/* re_dup will OpREFCNT_inc */
|
|
OpREFCNT_set(sop, 1);
|
|
LEAVE;
|
|
|
|
n = add_data(pRExC_state, 3, "nop");
|
|
RExC_rxi->data->data[n] = (void*)rop;
|
|
RExC_rxi->data->data[n+1] = (void*)sop;
|
|
RExC_rxi->data->data[n+2] = (void*)pad;
|
|
SvREFCNT_dec(sv);
|
|
}
|
|
else { /* First pass */
|
|
if (PL_reginterp_cnt < ++RExC_seen_evals
|
|
&& IN_PERL_RUNTIME)
|
|
/* No compiled RE interpolated, has runtime
|
|
components ===> unsafe. */
|
|
FAIL("Eval-group not allowed at runtime, use re 'eval'");
|
|
if (PL_tainting && PL_tainted)
|
|
FAIL("Eval-group in insecure regular expression");
|
|
#if PERL_VERSION > 8
|
|
if (IN_PERL_COMPILETIME)
|
|
PL_cv_has_eval = 1;
|
|
#endif
|
|
}
|
|
|
|
nextchar(pRExC_state);
|
|
if (is_logical) {
|
|
ret = reg_node(pRExC_state, LOGICAL);
|
|
if (!SIZE_ONLY)
|
|
ret->flags = 2;
|
|
REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
|
|
/* deal with the length of this later - MJD */
|
|
return ret;
|
|
}
|
|
ret = reganode(pRExC_state, EVAL, n);
|
|
Set_Node_Length(ret, RExC_parse - parse_start + 1);
|
|
Set_Node_Offset(ret, parse_start);
|
|
return ret;
|
|
}
|
|
case '(': /* (?(?{...})...) and (?(?=...)...) */
|
|
{
|
|
int is_define= 0;
|
|
if (RExC_parse[0] == '?') { /* (?(?...)) */
|
|
if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
|
|
|| RExC_parse[1] == '<'
|
|
|| RExC_parse[1] == '{') { /* Lookahead or eval. */
|
|
I32 flag;
|
|
|
|
ret = reg_node(pRExC_state, LOGICAL);
|
|
if (!SIZE_ONLY)
|
|
ret->flags = 1;
|
|
REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
|
|
goto insert_if;
|
|
}
|
|
}
|
|
else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
|
|
|| RExC_parse[0] == '\'' ) /* (?('NAME')...) */
|
|
{
|
|
char ch = RExC_parse[0] == '<' ? '>' : '\'';
|
|
char *name_start= RExC_parse++;
|
|
U32 num = 0;
|
|
SV *sv_dat=reg_scan_name(pRExC_state,
|
|
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
|
|
if (RExC_parse == name_start || *RExC_parse != ch)
|
|
vFAIL2("Sequence (?(%c... not terminated",
|
|
(ch == '>' ? '<' : ch));
|
|
RExC_parse++;
|
|
if (!SIZE_ONLY) {
|
|
num = add_data( pRExC_state, 1, "S" );
|
|
RExC_rxi->data->data[num]=(void*)sv_dat;
|
|
SvREFCNT_inc_simple_void(sv_dat);
|
|
}
|
|
ret = reganode(pRExC_state,NGROUPP,num);
|
|
goto insert_if_check_paren;
|
|
}
|
|
else if (RExC_parse[0] == 'D' &&
|
|
RExC_parse[1] == 'E' &&
|
|
RExC_parse[2] == 'F' &&
|
|
RExC_parse[3] == 'I' &&
|
|
RExC_parse[4] == 'N' &&
|
|
RExC_parse[5] == 'E')
|
|
{
|
|
ret = reganode(pRExC_state,DEFINEP,0);
|
|
RExC_parse +=6 ;
|
|
is_define = 1;
|
|
goto insert_if_check_paren;
|
|
}
|
|
else if (RExC_parse[0] == 'R') {
|
|
RExC_parse++;
|
|
parno = 0;
|
|
if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
|
|
parno = atoi(RExC_parse++);
|
|
while (isDIGIT(*RExC_parse))
|
|
RExC_parse++;
|
|
} else if (RExC_parse[0] == '&') {
|
|
SV *sv_dat;
|
|
RExC_parse++;
|
|
sv_dat = reg_scan_name(pRExC_state,
|
|
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
|
|
parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
|
|
}
|
|
ret = reganode(pRExC_state,INSUBP,parno);
|
|
goto insert_if_check_paren;
|
|
}
|
|
else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
|
|
/* (?(1)...) */
|
|
char c;
|
|
parno = atoi(RExC_parse++);
|
|
|
|
while (isDIGIT(*RExC_parse))
|
|
RExC_parse++;
|
|
ret = reganode(pRExC_state, GROUPP, parno);
|
|
|
|
insert_if_check_paren:
|
|
if ((c = *nextchar(pRExC_state)) != ')')
|
|
vFAIL("Switch condition not recognized");
|
|
insert_if:
|
|
REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
|
|
br = regbranch(pRExC_state, &flags, 1,depth+1);
|
|
if (br == NULL)
|
|
br = reganode(pRExC_state, LONGJMP, 0);
|
|
else
|
|
REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
|
|
c = *nextchar(pRExC_state);
|
|
if (flags&HASWIDTH)
|
|
*flagp |= HASWIDTH;
|
|
if (c == '|') {
|
|
if (is_define)
|
|
vFAIL("(?(DEFINE)....) does not allow branches");
|
|
lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
|
|
regbranch(pRExC_state, &flags, 1,depth+1);
|
|
REGTAIL(pRExC_state, ret, lastbr);
|
|
if (flags&HASWIDTH)
|
|
*flagp |= HASWIDTH;
|
|
c = *nextchar(pRExC_state);
|
|
}
|
|
else
|
|
lastbr = NULL;
|
|
if (c != ')')
|
|
vFAIL("Switch (?(condition)... contains too many branches");
|
|
ender = reg_node(pRExC_state, TAIL);
|
|
REGTAIL(pRExC_state, br, ender);
|
|
if (lastbr) {
|
|
REGTAIL(pRExC_state, lastbr, ender);
|
|
REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
|
|
}
|
|
else
|
|
REGTAIL(pRExC_state, ret, ender);
|
|
RExC_size++; /* XXX WHY do we need this?!!
|
|
For large programs it seems to be required
|
|
but I can't figure out why. -- dmq*/
|
|
return ret;
|
|
}
|
|
else {
|
|
vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
|
|
}
|
|
}
|
|
case 0:
|
|
RExC_parse--; /* for vFAIL to print correctly */
|
|
vFAIL("Sequence (? incomplete");
|
|
break;
|
|
case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
|
|
that follow */
|
|
has_use_defaults = TRUE;
|
|
STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
|
|
set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
|
|
? REGEX_UNICODE_CHARSET
|
|
: REGEX_DEPENDS_CHARSET);
|
|
goto parse_flags;
|
|
default:
|
|
--RExC_parse;
|
|
parse_flags: /* (?i) */
|
|
{
|
|
U32 posflags = 0, negflags = 0;
|
|
U32 *flagsp = &posflags;
|
|
char has_charset_modifier = '\0';
|
|
regex_charset cs = get_regex_charset(RExC_flags);
|
|
if (cs == REGEX_DEPENDS_CHARSET
|
|
&& (RExC_utf8 || RExC_uni_semantics))
|
|
{
|
|
cs = REGEX_UNICODE_CHARSET;
|
|
}
|
|
|
|
while (*RExC_parse) {
|
|
/* && strchr("iogcmsx", *RExC_parse) */
|
|
/* (?g), (?gc) and (?o) are useless here
|
|
and must be globally applied -- japhy */
|
|
switch (*RExC_parse) {
|
|
CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
|
|
case LOCALE_PAT_MOD:
|
|
if (has_charset_modifier) {
|
|
goto excess_modifier;
|
|
}
|
|
else if (flagsp == &negflags) {
|
|
goto neg_modifier;
|
|
}
|
|
cs = REGEX_LOCALE_CHARSET;
|
|
has_charset_modifier = LOCALE_PAT_MOD;
|
|
RExC_contains_locale = 1;
|
|
break;
|
|
case UNICODE_PAT_MOD:
|
|
if (has_charset_modifier) {
|
|
goto excess_modifier;
|
|
}
|
|
else if (flagsp == &negflags) {
|
|
goto neg_modifier;
|
|
}
|
|
cs = REGEX_UNICODE_CHARSET;
|
|
has_charset_modifier = UNICODE_PAT_MOD;
|
|
break;
|
|
case ASCII_RESTRICT_PAT_MOD:
|
|
if (flagsp == &negflags) {
|
|
goto neg_modifier;
|
|
}
|
|
if (has_charset_modifier) {
|
|
if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
|
|
goto excess_modifier;
|
|
}
|
|
/* Doubled modifier implies more restricted */
|
|
cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
|
|
}
|
|
else {
|
|
cs = REGEX_ASCII_RESTRICTED_CHARSET;
|
|
}
|
|
has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
|
|
break;
|
|
case DEPENDS_PAT_MOD:
|
|
if (has_use_defaults) {
|
|
goto fail_modifiers;
|
|
}
|
|
else if (flagsp == &negflags) {
|
|
goto neg_modifier;
|
|
}
|
|
else if (has_charset_modifier) {
|
|
goto excess_modifier;
|
|
}
|
|
|
|
/* The dual charset means unicode semantics if the
|
|
* pattern (or target, not known until runtime) are
|
|
* utf8, or something in the pattern indicates unicode
|
|
* semantics */
|
|
cs = (RExC_utf8 || RExC_uni_semantics)
|
|
? REGEX_UNICODE_CHARSET
|
|
: REGEX_DEPENDS_CHARSET;
|
|
has_charset_modifier = DEPENDS_PAT_MOD;
|
|
break;
|
|
excess_modifier:
|
|
RExC_parse++;
|
|
if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
|
|
vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
|
|
}
|
|
else if (has_charset_modifier == *(RExC_parse - 1)) {
|
|
vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
|
|
}
|
|
else {
|
|
vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
|
|
}
|
|
/*NOTREACHED*/
|
|
neg_modifier:
|
|
RExC_parse++;
|
|
vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
|
|
/*NOTREACHED*/
|
|
case ONCE_PAT_MOD: /* 'o' */
|
|
case GLOBAL_PAT_MOD: /* 'g' */
|
|
if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
|
|
const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
|
|
if (! (wastedflags & wflagbit) ) {
|
|
wastedflags |= wflagbit;
|
|
vWARN5(
|
|
RExC_parse + 1,
|
|
"Useless (%s%c) - %suse /%c modifier",
|
|
flagsp == &negflags ? "?-" : "?",
|
|
*RExC_parse,
|
|
flagsp == &negflags ? "don't " : "",
|
|
*RExC_parse
|
|
);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CONTINUE_PAT_MOD: /* 'c' */
|
|
if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
|
|
if (! (wastedflags & WASTED_C) ) {
|
|
wastedflags |= WASTED_GC;
|
|
vWARN3(
|
|
RExC_parse + 1,
|
|
"Useless (%sc) - %suse /gc modifier",
|
|
flagsp == &negflags ? "?-" : "?",
|
|
flagsp == &negflags ? "don't " : ""
|
|
);
|
|
}
|
|
}
|
|
break;
|
|
case KEEPCOPY_PAT_MOD: /* 'p' */
|
|
if (flagsp == &negflags) {
|
|
if (SIZE_ONLY)
|
|
ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
|
|
} else {
|
|
*flagsp |= RXf_PMf_KEEPCOPY;
|
|
}
|
|
break;
|
|
case '-':
|
|
/* A flag is a default iff it is following a minus, so
|
|
* if there is a minus, it means will be trying to
|
|
* re-specify a default which is an error */
|
|
if (has_use_defaults || flagsp == &negflags) {
|
|
fail_modifiers:
|
|
RExC_parse++;
|
|
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
|
|
/*NOTREACHED*/
|
|
}
|
|
flagsp = &negflags;
|
|
wastedflags = 0; /* reset so (?g-c) warns twice */
|
|
break;
|
|
case ':':
|
|
paren = ':';
|
|
/*FALLTHROUGH*/
|
|
case ')':
|
|
RExC_flags |= posflags;
|
|
RExC_flags &= ~negflags;
|
|
set_regex_charset(&RExC_flags, cs);
|
|
if (paren != ':') {
|
|
oregflags |= posflags;
|
|
oregflags &= ~negflags;
|
|
set_regex_charset(&oregflags, cs);
|
|
}
|
|
nextchar(pRExC_state);
|
|
if (paren != ':') {
|
|
*flagp = TRYAGAIN;
|
|
return NULL;
|
|
} else {
|
|
ret = NULL;
|
|
goto parse_rest;
|
|
}
|
|
/*NOTREACHED*/
|
|
default:
|
|
RExC_parse++;
|
|
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
|
|
/*NOTREACHED*/
|
|
}
|
|
++RExC_parse;
|
|
}
|
|
}} /* one for the default block, one for the switch */
|
|
}
|
|
else { /* (...) */
|
|
capturing_parens:
|
|
parno = RExC_npar;
|
|
RExC_npar++;
|
|
|
|
ret = reganode(pRExC_state, OPEN, parno);
|
|
if (!SIZE_ONLY ){
|
|
if (!RExC_nestroot)
|
|
RExC_nestroot = parno;
|
|
if (RExC_seen & REG_SEEN_RECURSE
|
|
&& !RExC_open_parens[parno-1])
|
|
{
|
|
DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
|
|
"Setting open paren #%"IVdf" to %d\n",
|
|
(IV)parno, REG_NODE_NUM(ret)));
|
|
RExC_open_parens[parno-1]= ret;
|
|
}
|
|
}
|
|
Set_Node_Length(ret, 1); /* MJD */
|
|
Set_Node_Offset(ret, RExC_parse); /* MJD */
|
|
is_open = 1;
|
|
}
|
|
}
|
|
else /* ! paren */
|
|
ret = NULL;
|
|
|
|
parse_rest:
|
|
/* Pick up the branches, linking them together. */
|
|
parse_start = RExC_parse; /* MJD */
|
|
br = regbranch(pRExC_state, &flags, 1,depth+1);
|
|
|
|
/* branch_len = (paren != 0); */
|
|
|
|
if (br == NULL)
|
|
return(NULL);
|
|
if (*RExC_parse == '|') {
|
|
if (!SIZE_ONLY && RExC_extralen) {
|
|
reginsert(pRExC_state, BRANCHJ, br, depth+1);
|
|
}
|
|
else { /* MJD */
|
|
reginsert(pRExC_state, BRANCH, br, depth+1);
|
|
Set_Node_Length(br, paren != 0);
|
|
Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
|
|
}
|
|
have_branch = 1;
|
|
if (SIZE_ONLY)
|
|
RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
|
|
}
|
|
else if (paren == ':') {
|
|
*flagp |= flags&SIMPLE;
|
|
}
|
|
if (is_open) { /* Starts with OPEN. */
|
|
REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
|
|
}
|
|
else if (paren != '?') /* Not Conditional */
|
|
ret = br;
|
|
*flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
|
|
lastbr = br;
|
|
while (*RExC_parse == '|') {
|
|
if (!SIZE_ONLY && RExC_extralen) {
|
|
ender = reganode(pRExC_state, LONGJMP,0);
|
|
REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
|
|
}
|
|
if (SIZE_ONLY)
|
|
RExC_extralen += 2; /* Account for LONGJMP. */
|
|
nextchar(pRExC_state);
|
|
if (freeze_paren) {
|
|
if (RExC_npar > after_freeze)
|
|
after_freeze = RExC_npar;
|
|
RExC_npar = freeze_paren;
|
|
}
|
|
br = regbranch(pRExC_state, &flags, 0, depth+1);
|
|
|
|
if (br == NULL)
|
|
return(NULL);
|
|
REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
|
|
lastbr = br;
|
|
*flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
|
|
}
|
|
|
|
if (have_branch || paren != ':') {
|
|
/* Make a closing node, and hook it on the end. */
|
|
switch (paren) {
|
|
case ':':
|
|
ender = reg_node(pRExC_state, TAIL);
|
|
break;
|
|
case 1:
|
|
ender = reganode(pRExC_state, CLOSE, parno);
|
|
if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
|
|
DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
|
|
"Setting close paren #%"IVdf" to %d\n",
|
|
(IV)parno, REG_NODE_NUM(ender)));
|
|
RExC_close_parens[parno-1]= ender;
|
|
if (RExC_nestroot == parno)
|
|
RExC_nestroot = 0;
|
|
}
|
|
Set_Node_Offset(ender,RExC_parse+1); /* MJD */
|
|
Set_Node_Length(ender,1); /* MJD */
|
|
break;
|
|
case '<':
|
|
case ',':
|
|
case '=':
|
|
case '!':
|
|
*flagp &= ~HASWIDTH;
|
|
/* FALL THROUGH */
|
|
case '>':
|
|
ender = reg_node(pRExC_state, SUCCEED);
|
|
break;
|
|
case 0:
|
|
ender = reg_node(pRExC_state, END);
|
|
if (!SIZE_ONLY) {
|
|
assert(!RExC_opend); /* there can only be one! */
|
|
RExC_opend = ender;
|
|
}
|
|
break;
|
|
}
|
|
REGTAIL(pRExC_state, lastbr, ender);
|
|
|
|
if (have_branch && !SIZE_ONLY) {
|
|
if (depth==1)
|
|
RExC_seen |= REG_TOP_LEVEL_BRANCHES;
|
|
|
|
/* Hook the tails of the branches to the closing node. */
|
|
for (br = ret; br; br = regnext(br)) {
|
|
const U8 op = PL_regkind[OP(br)];
|
|
if (op == BRANCH) {
|
|
REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
|
|
}
|
|
else if (op == BRANCHJ) {
|
|
REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
const char *p;
|
|
static const char parens[] = "=!<,>";
|
|
|
|
if (paren && (p = strchr(parens, paren))) {
|
|
U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
|
|
int flag = (p - parens) > 1;
|
|
|
|
if (paren == '>')
|
|
node = SUSPEND, flag = 0;
|
|
reginsert(pRExC_state, node,ret, depth+1);
|
|
Set_Node_Cur_Length(ret);
|
|
Set_Node_Offset(ret, parse_start + 1);
|
|
ret->flags = flag;
|
|
REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
|
|
}
|
|
}
|
|
|
|
/* Check for proper termination. */
|
|
if (paren) {
|
|
RExC_flags = oregflags;
|
|
if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
|
|
RExC_parse = oregcomp_parse;
|
|
vFAIL("Unmatched (");
|
|
}
|
|
}
|
|
else if (!paren && RExC_parse < RExC_end) {
|
|
if (*RExC_parse == ')') {
|
|
RExC_parse++;
|
|
vFAIL("Unmatched )");
|
|
}
|
|
else
|
|
FAIL("Junk on end of regexp"); /* "Can't happen". */
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
if (RExC_in_lookbehind) {
|
|
RExC_in_lookbehind--;
|
|
}
|
|
if (after_freeze > RExC_npar)
|
|
RExC_npar = after_freeze;
|
|
return(ret);
|
|
}
|
|
|
|
/*
|
|
- regbranch - one alternative of an | operator
|
|
*
|
|
* Implements the concatenation operator.
|
|
*/
|
|
STATIC regnode *
|
|
S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
|
|
{
|
|
dVAR;
|
|
register regnode *ret;
|
|
register regnode *chain = NULL;
|
|
register regnode *latest;
|
|
I32 flags = 0, c = 0;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGBRANCH;
|
|
|
|
DEBUG_PARSE("brnc");
|
|
|
|
if (first)
|
|
ret = NULL;
|
|
else {
|
|
if (!SIZE_ONLY && RExC_extralen)
|
|
ret = reganode(pRExC_state, BRANCHJ,0);
|
|
else {
|
|
ret = reg_node(pRExC_state, BRANCH);
|
|
Set_Node_Length(ret, 1);
|
|
}
|
|
}
|
|
|
|
if (!first && SIZE_ONLY)
|
|
RExC_extralen += 1; /* BRANCHJ */
|
|
|
|
*flagp = WORST; /* Tentatively. */
|
|
|
|
RExC_parse--;
|
|
nextchar(pRExC_state);
|
|
while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
|
|
flags &= ~TRYAGAIN;
|
|
latest = regpiece(pRExC_state, &flags,depth+1);
|
|
if (latest == NULL) {
|
|
if (flags & TRYAGAIN)
|
|
continue;
|
|
return(NULL);
|
|
}
|
|
else if (ret == NULL)
|
|
ret = latest;
|
|
*flagp |= flags&(HASWIDTH|POSTPONED);
|
|
if (chain == NULL) /* First piece. */
|
|
*flagp |= flags&SPSTART;
|
|
else {
|
|
RExC_naughty++;
|
|
REGTAIL(pRExC_state, chain, latest);
|
|
}
|
|
chain = latest;
|
|
c++;
|
|
}
|
|
if (chain == NULL) { /* Loop ran zero times. */
|
|
chain = reg_node(pRExC_state, NOTHING);
|
|
if (ret == NULL)
|
|
ret = chain;
|
|
}
|
|
if (c == 1) {
|
|
*flagp |= flags&SIMPLE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
- regpiece - something followed by possible [*+?]
|
|
*
|
|
* Note that the branching code sequences used for ? and the general cases
|
|
* of * and + are somewhat optimized: they use the same NOTHING node as
|
|
* both the endmarker for their branch list and the body of the last branch.
|
|
* It might seem that this node could be dispensed with entirely, but the
|
|
* endmarker role is not redundant.
|
|
*/
|
|
STATIC regnode *
|
|
S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
|
|
{
|
|
dVAR;
|
|
register regnode *ret;
|
|
register char op;
|
|
register char *next;
|
|
I32 flags;
|
|
const char * const origparse = RExC_parse;
|
|
I32 min;
|
|
I32 max = REG_INFTY;
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
char *parse_start;
|
|
#endif
|
|
const char *maxpos = NULL;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGPIECE;
|
|
|
|
DEBUG_PARSE("piec");
|
|
|
|
ret = regatom(pRExC_state, &flags,depth+1);
|
|
if (ret == NULL) {
|
|
if (flags & TRYAGAIN)
|
|
*flagp |= TRYAGAIN;
|
|
return(NULL);
|
|
}
|
|
|
|
op = *RExC_parse;
|
|
|
|
if (op == '{' && regcurly(RExC_parse)) {
|
|
maxpos = NULL;
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
parse_start = RExC_parse; /* MJD */
|
|
#endif
|
|
next = RExC_parse + 1;
|
|
while (isDIGIT(*next) || *next == ',') {
|
|
if (*next == ',') {
|
|
if (maxpos)
|
|
break;
|
|
else
|
|
maxpos = next;
|
|
}
|
|
next++;
|
|
}
|
|
if (*next == '}') { /* got one */
|
|
if (!maxpos)
|
|
maxpos = next;
|
|
RExC_parse++;
|
|
min = atoi(RExC_parse);
|
|
if (*maxpos == ',')
|
|
maxpos++;
|
|
else
|
|
maxpos = RExC_parse;
|
|
max = atoi(maxpos);
|
|
if (!max && *maxpos != '0')
|
|
max = REG_INFTY; /* meaning "infinity" */
|
|
else if (max >= REG_INFTY)
|
|
vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
|
|
RExC_parse = next;
|
|
nextchar(pRExC_state);
|
|
|
|
do_curly:
|
|
if ((flags&SIMPLE)) {
|
|
RExC_naughty += 2 + RExC_naughty / 2;
|
|
reginsert(pRExC_state, CURLY, ret, depth+1);
|
|
Set_Node_Offset(ret, parse_start+1); /* MJD */
|
|
Set_Node_Cur_Length(ret);
|
|
}
|
|
else {
|
|
regnode * const w = reg_node(pRExC_state, WHILEM);
|
|
|
|
w->flags = 0;
|
|
REGTAIL(pRExC_state, ret, w);
|
|
if (!SIZE_ONLY && RExC_extralen) {
|
|
reginsert(pRExC_state, LONGJMP,ret, depth+1);
|
|
reginsert(pRExC_state, NOTHING,ret, depth+1);
|
|
NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
|
|
}
|
|
reginsert(pRExC_state, CURLYX,ret, depth+1);
|
|
/* MJD hk */
|
|
Set_Node_Offset(ret, parse_start+1);
|
|
Set_Node_Length(ret,
|
|
op == '{' ? (RExC_parse - parse_start) : 1);
|
|
|
|
if (!SIZE_ONLY && RExC_extralen)
|
|
NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
|
|
REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
|
|
if (SIZE_ONLY)
|
|
RExC_whilem_seen++, RExC_extralen += 3;
|
|
RExC_naughty += 4 + RExC_naughty; /* compound interest */
|
|
}
|
|
ret->flags = 0;
|
|
|
|
if (min > 0)
|
|
*flagp = WORST;
|
|
if (max > 0)
|
|
*flagp |= HASWIDTH;
|
|
if (max < min)
|
|
vFAIL("Can't do {n,m} with n > m");
|
|
if (!SIZE_ONLY) {
|
|
ARG1_SET(ret, (U16)min);
|
|
ARG2_SET(ret, (U16)max);
|
|
}
|
|
|
|
goto nest_check;
|
|
}
|
|
}
|
|
|
|
if (!ISMULT1(op)) {
|
|
*flagp = flags;
|
|
return(ret);
|
|
}
|
|
|
|
#if 0 /* Now runtime fix should be reliable. */
|
|
|
|
/* if this is reinstated, don't forget to put this back into perldiag:
|
|
|
|
=item Regexp *+ operand could be empty at {#} in regex m/%s/
|
|
|
|
(F) The part of the regexp subject to either the * or + quantifier
|
|
could match an empty string. The {#} shows in the regular
|
|
expression about where the problem was discovered.
|
|
|
|
*/
|
|
|
|
if (!(flags&HASWIDTH) && op != '?')
|
|
vFAIL("Regexp *+ operand could be empty");
|
|
#endif
|
|
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
parse_start = RExC_parse;
|
|
#endif
|
|
nextchar(pRExC_state);
|
|
|
|
*flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
|
|
|
|
if (op == '*' && (flags&SIMPLE)) {
|
|
reginsert(pRExC_state, STAR, ret, depth+1);
|
|
ret->flags = 0;
|
|
RExC_naughty += 4;
|
|
}
|
|
else if (op == '*') {
|
|
min = 0;
|
|
goto do_curly;
|
|
}
|
|
else if (op == '+' && (flags&SIMPLE)) {
|
|
reginsert(pRExC_state, PLUS, ret, depth+1);
|
|
ret->flags = 0;
|
|
RExC_naughty += 3;
|
|
}
|
|
else if (op == '+') {
|
|
min = 1;
|
|
goto do_curly;
|
|
}
|
|
else if (op == '?') {
|
|
min = 0; max = 1;
|
|
goto do_curly;
|
|
}
|
|
nest_check:
|
|
if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
|
|
ckWARN3reg(RExC_parse,
|
|
"%.*s matches null string many times",
|
|
(int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
|
|
origparse);
|
|
}
|
|
|
|
if (RExC_parse < RExC_end && *RExC_parse == '?') {
|
|
nextchar(pRExC_state);
|
|
reginsert(pRExC_state, MINMOD, ret, depth+1);
|
|
REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
|
|
}
|
|
#ifndef REG_ALLOW_MINMOD_SUSPEND
|
|
else
|
|
#endif
|
|
if (RExC_parse < RExC_end && *RExC_parse == '+') {
|
|
regnode *ender;
|
|
nextchar(pRExC_state);
|
|
ender = reg_node(pRExC_state, SUCCEED);
|
|
REGTAIL(pRExC_state, ret, ender);
|
|
reginsert(pRExC_state, SUSPEND, ret, depth+1);
|
|
ret->flags = 0;
|
|
ender = reg_node(pRExC_state, TAIL);
|
|
REGTAIL(pRExC_state, ret, ender);
|
|
/*ret= ender;*/
|
|
}
|
|
|
|
if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
|
|
RExC_parse++;
|
|
vFAIL("Nested quantifiers");
|
|
}
|
|
|
|
return(ret);
|
|
}
|
|
|
|
|
|
/* reg_namedseq(pRExC_state,UVp, UV depth)
|
|
|
|
This is expected to be called by a parser routine that has
|
|
recognized '\N' and needs to handle the rest. RExC_parse is
|
|
expected to point at the first char following the N at the time
|
|
of the call.
|
|
|
|
The \N may be inside (indicated by valuep not being NULL) or outside a
|
|
character class.
|
|
|
|
\N may begin either a named sequence, or if outside a character class, mean
|
|
to match a non-newline. For non single-quoted regexes, the tokenizer has
|
|
attempted to decide which, and in the case of a named sequence converted it
|
|
into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
|
|
where c1... are the characters in the sequence. For single-quoted regexes,
|
|
the tokenizer passes the \N sequence through unchanged; this code will not
|
|
attempt to determine this nor expand those. The net effect is that if the
|
|
beginning of the passed-in pattern isn't '{U+' or there is no '}', it
|
|
signals that this \N occurrence means to match a non-newline.
|
|
|
|
Only the \N{U+...} form should occur in a character class, for the same
|
|
reason that '.' inside a character class means to just match a period: it
|
|
just doesn't make sense.
|
|
|
|
If valuep is non-null then it is assumed that we are parsing inside
|
|
of a charclass definition and the first codepoint in the resolved
|
|
string is returned via *valuep and the routine will return NULL.
|
|
In this mode if a multichar string is returned from the charnames
|
|
handler, a warning will be issued, and only the first char in the
|
|
sequence will be examined. If the string returned is zero length
|
|
then the value of *valuep is undefined and NON-NULL will
|
|
be returned to indicate failure. (This will NOT be a valid pointer
|
|
to a regnode.)
|
|
|
|
If valuep is null then it is assumed that we are parsing normal text and a
|
|
new EXACT node is inserted into the program containing the resolved string,
|
|
and a pointer to the new node is returned. But if the string is zero length
|
|
a NOTHING node is emitted instead.
|
|
|
|
On success RExC_parse is set to the char following the endbrace.
|
|
Parsing failures will generate a fatal error via vFAIL(...)
|
|
*/
|
|
STATIC regnode *
|
|
S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
|
|
{
|
|
char * endbrace; /* '}' following the name */
|
|
regnode *ret = NULL;
|
|
char* p;
|
|
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REG_NAMEDSEQ;
|
|
|
|
GET_RE_DEBUG_FLAGS;
|
|
|
|
/* The [^\n] meaning of \N ignores spaces and comments under the /x
|
|
* modifier. The other meaning does not */
|
|
p = (RExC_flags & RXf_PMf_EXTENDED)
|
|
? regwhite( pRExC_state, RExC_parse )
|
|
: RExC_parse;
|
|
|
|
/* Disambiguate between \N meaning a named character versus \N meaning
|
|
* [^\n]. The former is assumed when it can't be the latter. */
|
|
if (*p != '{' || regcurly(p)) {
|
|
RExC_parse = p;
|
|
if (valuep) {
|
|
/* no bare \N in a charclass */
|
|
vFAIL("\\N in a character class must be a named character: \\N{...}");
|
|
}
|
|
nextchar(pRExC_state);
|
|
ret = reg_node(pRExC_state, REG_ANY);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
RExC_naughty++;
|
|
RExC_parse--;
|
|
Set_Node_Length(ret, 1); /* MJD */
|
|
return ret;
|
|
}
|
|
|
|
/* Here, we have decided it should be a named sequence */
|
|
|
|
/* The test above made sure that the next real character is a '{', but
|
|
* under the /x modifier, it could be separated by space (or a comment and
|
|
* \n) and this is not allowed (for consistency with \x{...} and the
|
|
* tokenizer handling of \N{NAME}). */
|
|
if (*RExC_parse != '{') {
|
|
vFAIL("Missing braces on \\N{}");
|
|
}
|
|
|
|
RExC_parse++; /* Skip past the '{' */
|
|
|
|
if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
|
|
|| ! (endbrace == RExC_parse /* nothing between the {} */
|
|
|| (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
|
|
&& strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
|
|
{
|
|
if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
|
|
vFAIL("\\N{NAME} must be resolved by the lexer");
|
|
}
|
|
|
|
if (endbrace == RExC_parse) { /* empty: \N{} */
|
|
if (! valuep) {
|
|
RExC_parse = endbrace + 1;
|
|
return reg_node(pRExC_state,NOTHING);
|
|
}
|
|
|
|
if (SIZE_ONLY) {
|
|
ckWARNreg(RExC_parse,
|
|
"Ignoring zero length \\N{} in character class"
|
|
);
|
|
RExC_parse = endbrace + 1;
|
|
}
|
|
*valuep = 0;
|
|
return (regnode *) &RExC_parse; /* Invalid regnode pointer */
|
|
}
|
|
|
|
REQUIRE_UTF8; /* named sequences imply Unicode semantics */
|
|
RExC_parse += 2; /* Skip past the 'U+' */
|
|
|
|
if (valuep) { /* In a bracketed char class */
|
|
/* We only pay attention to the first char of
|
|
multichar strings being returned. I kinda wonder
|
|
if this makes sense as it does change the behaviour
|
|
from earlier versions, OTOH that behaviour was broken
|
|
as well. XXX Solution is to recharacterize as
|
|
[rest-of-class]|multi1|multi2... */
|
|
|
|
STRLEN length_of_hex;
|
|
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
|
|
| PERL_SCAN_DISALLOW_PREFIX
|
|
| (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
|
|
|
|
char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
|
|
if (endchar < endbrace) {
|
|
ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
|
|
}
|
|
|
|
length_of_hex = (STRLEN)(endchar - RExC_parse);
|
|
*valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
|
|
|
|
/* The tokenizer should have guaranteed validity, but it's possible to
|
|
* bypass it by using single quoting, so check */
|
|
if (length_of_hex == 0
|
|
|| length_of_hex != (STRLEN)(endchar - RExC_parse) )
|
|
{
|
|
RExC_parse += length_of_hex; /* Includes all the valid */
|
|
RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
|
|
? UTF8SKIP(RExC_parse)
|
|
: 1;
|
|
/* Guard against malformed utf8 */
|
|
if (RExC_parse >= endchar) RExC_parse = endchar;
|
|
vFAIL("Invalid hexadecimal number in \\N{U+...}");
|
|
}
|
|
|
|
RExC_parse = endbrace + 1;
|
|
if (endchar == endbrace) return NULL;
|
|
|
|
ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
|
|
}
|
|
else { /* Not a char class */
|
|
|
|
/* What is done here is to convert this to a sub-pattern of the form
|
|
* (?:\x{char1}\x{char2}...)
|
|
* and then call reg recursively. That way, it retains its atomicness,
|
|
* while not having to worry about special handling that some code
|
|
* points may have. toke.c has converted the original Unicode values
|
|
* to native, so that we can just pass on the hex values unchanged. We
|
|
* do have to set a flag to keep recoding from happening in the
|
|
* recursion */
|
|
|
|
SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
|
|
STRLEN len;
|
|
char *endchar; /* Points to '.' or '}' ending cur char in the input
|
|
stream */
|
|
char *orig_end = RExC_end;
|
|
|
|
while (RExC_parse < endbrace) {
|
|
|
|
/* Code points are separated by dots. If none, there is only one
|
|
* code point, and is terminated by the brace */
|
|
endchar = RExC_parse + strcspn(RExC_parse, ".}");
|
|
|
|
/* Convert to notation the rest of the code understands */
|
|
sv_catpv(substitute_parse, "\\x{");
|
|
sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
|
|
sv_catpv(substitute_parse, "}");
|
|
|
|
/* Point to the beginning of the next character in the sequence. */
|
|
RExC_parse = endchar + 1;
|
|
}
|
|
sv_catpv(substitute_parse, ")");
|
|
|
|
RExC_parse = SvPV(substitute_parse, len);
|
|
|
|
/* Don't allow empty number */
|
|
if (len < 8) {
|
|
vFAIL("Invalid hexadecimal number in \\N{U+...}");
|
|
}
|
|
RExC_end = RExC_parse + len;
|
|
|
|
/* The values are Unicode, and therefore not subject to recoding */
|
|
RExC_override_recoding = 1;
|
|
|
|
ret = reg(pRExC_state, 1, flagp, depth+1);
|
|
|
|
RExC_parse = endbrace;
|
|
RExC_end = orig_end;
|
|
RExC_override_recoding = 0;
|
|
|
|
nextchar(pRExC_state);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* reg_recode
|
|
*
|
|
* It returns the code point in utf8 for the value in *encp.
|
|
* value: a code value in the source encoding
|
|
* encp: a pointer to an Encode object
|
|
*
|
|
* If the result from Encode is not a single character,
|
|
* it returns U+FFFD (Replacement character) and sets *encp to NULL.
|
|
*/
|
|
STATIC UV
|
|
S_reg_recode(pTHX_ const char value, SV **encp)
|
|
{
|
|
STRLEN numlen = 1;
|
|
SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
|
|
const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
|
|
const STRLEN newlen = SvCUR(sv);
|
|
UV uv = UNICODE_REPLACEMENT;
|
|
|
|
PERL_ARGS_ASSERT_REG_RECODE;
|
|
|
|
if (newlen)
|
|
uv = SvUTF8(sv)
|
|
? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
|
|
: *(U8*)s;
|
|
|
|
if (!newlen || numlen != newlen) {
|
|
uv = UNICODE_REPLACEMENT;
|
|
*encp = NULL;
|
|
}
|
|
return uv;
|
|
}
|
|
|
|
|
|
/*
|
|
- regatom - the lowest level
|
|
|
|
Try to identify anything special at the start of the pattern. If there
|
|
is, then handle it as required. This may involve generating a single regop,
|
|
such as for an assertion; or it may involve recursing, such as to
|
|
handle a () structure.
|
|
|
|
If the string doesn't start with something special then we gobble up
|
|
as much literal text as we can.
|
|
|
|
Once we have been able to handle whatever type of thing started the
|
|
sequence, we return.
|
|
|
|
Note: we have to be careful with escapes, as they can be both literal
|
|
and special, and in the case of \10 and friends can either, depending
|
|
on context. Specifically there are two separate switches for handling
|
|
escape sequences, with the one for handling literal escapes requiring
|
|
a dummy entry for all of the special escapes that are actually handled
|
|
by the other.
|
|
*/
|
|
|
|
STATIC regnode *
|
|
S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
|
|
{
|
|
dVAR;
|
|
register regnode *ret = NULL;
|
|
I32 flags;
|
|
char *parse_start = RExC_parse;
|
|
U8 op;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
DEBUG_PARSE("atom");
|
|
*flagp = WORST; /* Tentatively. */
|
|
|
|
PERL_ARGS_ASSERT_REGATOM;
|
|
|
|
tryagain:
|
|
switch ((U8)*RExC_parse) {
|
|
case '^':
|
|
RExC_seen_zerolen++;
|
|
nextchar(pRExC_state);
|
|
if (RExC_flags & RXf_PMf_MULTILINE)
|
|
ret = reg_node(pRExC_state, MBOL);
|
|
else if (RExC_flags & RXf_PMf_SINGLELINE)
|
|
ret = reg_node(pRExC_state, SBOL);
|
|
else
|
|
ret = reg_node(pRExC_state, BOL);
|
|
Set_Node_Length(ret, 1); /* MJD */
|
|
break;
|
|
case '$':
|
|
nextchar(pRExC_state);
|
|
if (*RExC_parse)
|
|
RExC_seen_zerolen++;
|
|
if (RExC_flags & RXf_PMf_MULTILINE)
|
|
ret = reg_node(pRExC_state, MEOL);
|
|
else if (RExC_flags & RXf_PMf_SINGLELINE)
|
|
ret = reg_node(pRExC_state, SEOL);
|
|
else
|
|
ret = reg_node(pRExC_state, EOL);
|
|
Set_Node_Length(ret, 1); /* MJD */
|
|
break;
|
|
case '.':
|
|
nextchar(pRExC_state);
|
|
if (RExC_flags & RXf_PMf_SINGLELINE)
|
|
ret = reg_node(pRExC_state, SANY);
|
|
else
|
|
ret = reg_node(pRExC_state, REG_ANY);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
RExC_naughty++;
|
|
Set_Node_Length(ret, 1); /* MJD */
|
|
break;
|
|
case '[':
|
|
{
|
|
char * const oregcomp_parse = ++RExC_parse;
|
|
ret = regclass(pRExC_state,depth+1);
|
|
if (*RExC_parse != ']') {
|
|
RExC_parse = oregcomp_parse;
|
|
vFAIL("Unmatched [");
|
|
}
|
|
nextchar(pRExC_state);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
|
|
break;
|
|
}
|
|
case '(':
|
|
nextchar(pRExC_state);
|
|
ret = reg(pRExC_state, 1, &flags,depth+1);
|
|
if (ret == NULL) {
|
|
if (flags & TRYAGAIN) {
|
|
if (RExC_parse == RExC_end) {
|
|
/* Make parent create an empty node if needed. */
|
|
*flagp |= TRYAGAIN;
|
|
return(NULL);
|
|
}
|
|
goto tryagain;
|
|
}
|
|
return(NULL);
|
|
}
|
|
*flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
|
|
break;
|
|
case '|':
|
|
case ')':
|
|
if (flags & TRYAGAIN) {
|
|
*flagp |= TRYAGAIN;
|
|
return NULL;
|
|
}
|
|
vFAIL("Internal urp");
|
|
/* Supposed to be caught earlier. */
|
|
break;
|
|
case '?':
|
|
case '+':
|
|
case '*':
|
|
RExC_parse++;
|
|
vFAIL("Quantifier follows nothing");
|
|
break;
|
|
case '\\':
|
|
/* Special Escapes
|
|
|
|
This switch handles escape sequences that resolve to some kind
|
|
of special regop and not to literal text. Escape sequnces that
|
|
resolve to literal text are handled below in the switch marked
|
|
"Literal Escapes".
|
|
|
|
Every entry in this switch *must* have a corresponding entry
|
|
in the literal escape switch. However, the opposite is not
|
|
required, as the default for this switch is to jump to the
|
|
literal text handling code.
|
|
*/
|
|
switch ((U8)*++RExC_parse) {
|
|
/* Special Escapes */
|
|
case 'A':
|
|
RExC_seen_zerolen++;
|
|
ret = reg_node(pRExC_state, SBOL);
|
|
*flagp |= SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'G':
|
|
ret = reg_node(pRExC_state, GPOS);
|
|
RExC_seen |= REG_SEEN_GPOS;
|
|
*flagp |= SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'K':
|
|
RExC_seen_zerolen++;
|
|
ret = reg_node(pRExC_state, KEEPS);
|
|
*flagp |= SIMPLE;
|
|
/* XXX:dmq : disabling in-place substitution seems to
|
|
* be necessary here to avoid cases of memory corruption, as
|
|
* with: C<$_="x" x 80; s/x\K/y/> -- rgs
|
|
*/
|
|
RExC_seen |= REG_SEEN_LOOKBEHIND;
|
|
goto finish_meta_pat;
|
|
case 'Z':
|
|
ret = reg_node(pRExC_state, SEOL);
|
|
*flagp |= SIMPLE;
|
|
RExC_seen_zerolen++; /* Do not optimize RE away */
|
|
goto finish_meta_pat;
|
|
case 'z':
|
|
ret = reg_node(pRExC_state, EOS);
|
|
*flagp |= SIMPLE;
|
|
RExC_seen_zerolen++; /* Do not optimize RE away */
|
|
goto finish_meta_pat;
|
|
case 'C':
|
|
ret = reg_node(pRExC_state, CANY);
|
|
RExC_seen |= REG_SEEN_CANY;
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'X':
|
|
ret = reg_node(pRExC_state, CLUMP);
|
|
*flagp |= HASWIDTH;
|
|
goto finish_meta_pat;
|
|
case 'w':
|
|
switch (get_regex_charset(RExC_flags)) {
|
|
case REGEX_LOCALE_CHARSET:
|
|
op = ALNUML;
|
|
break;
|
|
case REGEX_UNICODE_CHARSET:
|
|
op = ALNUMU;
|
|
break;
|
|
case REGEX_ASCII_RESTRICTED_CHARSET:
|
|
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
|
|
op = ALNUMA;
|
|
break;
|
|
case REGEX_DEPENDS_CHARSET:
|
|
op = ALNUM;
|
|
break;
|
|
default:
|
|
goto bad_charset;
|
|
}
|
|
ret = reg_node(pRExC_state, op);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'W':
|
|
switch (get_regex_charset(RExC_flags)) {
|
|
case REGEX_LOCALE_CHARSET:
|
|
op = NALNUML;
|
|
break;
|
|
case REGEX_UNICODE_CHARSET:
|
|
op = NALNUMU;
|
|
break;
|
|
case REGEX_ASCII_RESTRICTED_CHARSET:
|
|
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
|
|
op = NALNUMA;
|
|
break;
|
|
case REGEX_DEPENDS_CHARSET:
|
|
op = NALNUM;
|
|
break;
|
|
default:
|
|
goto bad_charset;
|
|
}
|
|
ret = reg_node(pRExC_state, op);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'b':
|
|
RExC_seen_zerolen++;
|
|
RExC_seen |= REG_SEEN_LOOKBEHIND;
|
|
switch (get_regex_charset(RExC_flags)) {
|
|
case REGEX_LOCALE_CHARSET:
|
|
op = BOUNDL;
|
|
break;
|
|
case REGEX_UNICODE_CHARSET:
|
|
op = BOUNDU;
|
|
break;
|
|
case REGEX_ASCII_RESTRICTED_CHARSET:
|
|
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
|
|
op = BOUNDA;
|
|
break;
|
|
case REGEX_DEPENDS_CHARSET:
|
|
op = BOUND;
|
|
break;
|
|
default:
|
|
goto bad_charset;
|
|
}
|
|
ret = reg_node(pRExC_state, op);
|
|
FLAGS(ret) = get_regex_charset(RExC_flags);
|
|
*flagp |= SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'B':
|
|
RExC_seen_zerolen++;
|
|
RExC_seen |= REG_SEEN_LOOKBEHIND;
|
|
switch (get_regex_charset(RExC_flags)) {
|
|
case REGEX_LOCALE_CHARSET:
|
|
op = NBOUNDL;
|
|
break;
|
|
case REGEX_UNICODE_CHARSET:
|
|
op = NBOUNDU;
|
|
break;
|
|
case REGEX_ASCII_RESTRICTED_CHARSET:
|
|
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
|
|
op = NBOUNDA;
|
|
break;
|
|
case REGEX_DEPENDS_CHARSET:
|
|
op = NBOUND;
|
|
break;
|
|
default:
|
|
goto bad_charset;
|
|
}
|
|
ret = reg_node(pRExC_state, op);
|
|
FLAGS(ret) = get_regex_charset(RExC_flags);
|
|
*flagp |= SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 's':
|
|
switch (get_regex_charset(RExC_flags)) {
|
|
case REGEX_LOCALE_CHARSET:
|
|
op = SPACEL;
|
|
break;
|
|
case REGEX_UNICODE_CHARSET:
|
|
op = SPACEU;
|
|
break;
|
|
case REGEX_ASCII_RESTRICTED_CHARSET:
|
|
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
|
|
op = SPACEA;
|
|
break;
|
|
case REGEX_DEPENDS_CHARSET:
|
|
op = SPACE;
|
|
break;
|
|
default:
|
|
goto bad_charset;
|
|
}
|
|
ret = reg_node(pRExC_state, op);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'S':
|
|
switch (get_regex_charset(RExC_flags)) {
|
|
case REGEX_LOCALE_CHARSET:
|
|
op = NSPACEL;
|
|
break;
|
|
case REGEX_UNICODE_CHARSET:
|
|
op = NSPACEU;
|
|
break;
|
|
case REGEX_ASCII_RESTRICTED_CHARSET:
|
|
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
|
|
op = NSPACEA;
|
|
break;
|
|
case REGEX_DEPENDS_CHARSET:
|
|
op = NSPACE;
|
|
break;
|
|
default:
|
|
goto bad_charset;
|
|
}
|
|
ret = reg_node(pRExC_state, op);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'd':
|
|
switch (get_regex_charset(RExC_flags)) {
|
|
case REGEX_LOCALE_CHARSET:
|
|
op = DIGITL;
|
|
break;
|
|
case REGEX_ASCII_RESTRICTED_CHARSET:
|
|
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
|
|
op = DIGITA;
|
|
break;
|
|
case REGEX_DEPENDS_CHARSET: /* No difference between these */
|
|
case REGEX_UNICODE_CHARSET:
|
|
op = DIGIT;
|
|
break;
|
|
default:
|
|
goto bad_charset;
|
|
}
|
|
ret = reg_node(pRExC_state, op);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'D':
|
|
switch (get_regex_charset(RExC_flags)) {
|
|
case REGEX_LOCALE_CHARSET:
|
|
op = NDIGITL;
|
|
break;
|
|
case REGEX_ASCII_RESTRICTED_CHARSET:
|
|
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
|
|
op = NDIGITA;
|
|
break;
|
|
case REGEX_DEPENDS_CHARSET: /* No difference between these */
|
|
case REGEX_UNICODE_CHARSET:
|
|
op = NDIGIT;
|
|
break;
|
|
default:
|
|
goto bad_charset;
|
|
}
|
|
ret = reg_node(pRExC_state, op);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'R':
|
|
ret = reg_node(pRExC_state, LNBREAK);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'h':
|
|
ret = reg_node(pRExC_state, HORIZWS);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'H':
|
|
ret = reg_node(pRExC_state, NHORIZWS);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'v':
|
|
ret = reg_node(pRExC_state, VERTWS);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
goto finish_meta_pat;
|
|
case 'V':
|
|
ret = reg_node(pRExC_state, NVERTWS);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
finish_meta_pat:
|
|
nextchar(pRExC_state);
|
|
Set_Node_Length(ret, 2); /* MJD */
|
|
break;
|
|
case 'p':
|
|
case 'P':
|
|
{
|
|
char* const oldregxend = RExC_end;
|
|
#ifdef DEBUGGING
|
|
char* parse_start = RExC_parse - 2;
|
|
#endif
|
|
|
|
if (RExC_parse[1] == '{') {
|
|
/* a lovely hack--pretend we saw [\pX] instead */
|
|
RExC_end = strchr(RExC_parse, '}');
|
|
if (!RExC_end) {
|
|
const U8 c = (U8)*RExC_parse;
|
|
RExC_parse += 2;
|
|
RExC_end = oldregxend;
|
|
vFAIL2("Missing right brace on \\%c{}", c);
|
|
}
|
|
RExC_end++;
|
|
}
|
|
else {
|
|
RExC_end = RExC_parse + 2;
|
|
if (RExC_end > oldregxend)
|
|
RExC_end = oldregxend;
|
|
}
|
|
RExC_parse--;
|
|
|
|
ret = regclass(pRExC_state,depth+1);
|
|
|
|
RExC_end = oldregxend;
|
|
RExC_parse--;
|
|
|
|
Set_Node_Offset(ret, parse_start + 2);
|
|
Set_Node_Cur_Length(ret);
|
|
nextchar(pRExC_state);
|
|
*flagp |= HASWIDTH|SIMPLE;
|
|
}
|
|
break;
|
|
case 'N':
|
|
/* Handle \N and \N{NAME} here and not below because it can be
|
|
multicharacter. join_exact() will join them up later on.
|
|
Also this makes sure that things like /\N{BLAH}+/ and
|
|
\N{BLAH} being multi char Just Happen. dmq*/
|
|
++RExC_parse;
|
|
ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
|
|
break;
|
|
case 'k': /* Handle \k<NAME> and \k'NAME' */
|
|
parse_named_seq:
|
|
{
|
|
char ch= RExC_parse[1];
|
|
if (ch != '<' && ch != '\'' && ch != '{') {
|
|
RExC_parse++;
|
|
vFAIL2("Sequence %.2s... not terminated",parse_start);
|
|
} else {
|
|
/* this pretty much dupes the code for (?P=...) in reg(), if
|
|
you change this make sure you change that */
|
|
char* name_start = (RExC_parse += 2);
|
|
U32 num = 0;
|
|
SV *sv_dat = reg_scan_name(pRExC_state,
|
|
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
|
|
ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
|
|
if (RExC_parse == name_start || *RExC_parse != ch)
|
|
vFAIL2("Sequence %.3s... not terminated",parse_start);
|
|
|
|
if (!SIZE_ONLY) {
|
|
num = add_data( pRExC_state, 1, "S" );
|
|
RExC_rxi->data->data[num]=(void*)sv_dat;
|
|
SvREFCNT_inc_simple_void(sv_dat);
|
|
}
|
|
|
|
RExC_sawback = 1;
|
|
ret = reganode(pRExC_state,
|
|
((! FOLD)
|
|
? NREF
|
|
: (MORE_ASCII_RESTRICTED)
|
|
? NREFFA
|
|
: (AT_LEAST_UNI_SEMANTICS)
|
|
? NREFFU
|
|
: (LOC)
|
|
? NREFFL
|
|
: NREFF),
|
|
num);
|
|
*flagp |= HASWIDTH;
|
|
|
|
/* override incorrect value set in reganode MJD */
|
|
Set_Node_Offset(ret, parse_start+1);
|
|
Set_Node_Cur_Length(ret); /* MJD */
|
|
nextchar(pRExC_state);
|
|
|
|
}
|
|
break;
|
|
}
|
|
case 'g':
|
|
case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
{
|
|
I32 num;
|
|
bool isg = *RExC_parse == 'g';
|
|
bool isrel = 0;
|
|
bool hasbrace = 0;
|
|
if (isg) {
|
|
RExC_parse++;
|
|
if (*RExC_parse == '{') {
|
|
RExC_parse++;
|
|
hasbrace = 1;
|
|
}
|
|
if (*RExC_parse == '-') {
|
|
RExC_parse++;
|
|
isrel = 1;
|
|
}
|
|
if (hasbrace && !isDIGIT(*RExC_parse)) {
|
|
if (isrel) RExC_parse--;
|
|
RExC_parse -= 2;
|
|
goto parse_named_seq;
|
|
} }
|
|
num = atoi(RExC_parse);
|
|
if (isg && num == 0)
|
|
vFAIL("Reference to invalid group 0");
|
|
if (isrel) {
|
|
num = RExC_npar - num;
|
|
if (num < 1)
|
|
vFAIL("Reference to nonexistent or unclosed group");
|
|
}
|
|
if (!isg && num > 9 && num >= RExC_npar)
|
|
goto defchar;
|
|
else {
|
|
char * const parse_start = RExC_parse - 1; /* MJD */
|
|
while (isDIGIT(*RExC_parse))
|
|
RExC_parse++;
|
|
if (parse_start == RExC_parse - 1)
|
|
vFAIL("Unterminated \\g... pattern");
|
|
if (hasbrace) {
|
|
if (*RExC_parse != '}')
|
|
vFAIL("Unterminated \\g{...} pattern");
|
|
RExC_parse++;
|
|
}
|
|
if (!SIZE_ONLY) {
|
|
if (num > (I32)RExC_rx->nparens)
|
|
vFAIL("Reference to nonexistent group");
|
|
}
|
|
RExC_sawback = 1;
|
|
ret = reganode(pRExC_state,
|
|
((! FOLD)
|
|
? REF
|
|
: (MORE_ASCII_RESTRICTED)
|
|
? REFFA
|
|
: (AT_LEAST_UNI_SEMANTICS)
|
|
? REFFU
|
|
: (LOC)
|
|
? REFFL
|
|
: REFF),
|
|
num);
|
|
*flagp |= HASWIDTH;
|
|
|
|
/* override incorrect value set in reganode MJD */
|
|
Set_Node_Offset(ret, parse_start+1);
|
|
Set_Node_Cur_Length(ret); /* MJD */
|
|
RExC_parse--;
|
|
nextchar(pRExC_state);
|
|
}
|
|
}
|
|
break;
|
|
case '\0':
|
|
if (RExC_parse >= RExC_end)
|
|
FAIL("Trailing \\");
|
|
/* FALL THROUGH */
|
|
default:
|
|
/* Do not generate "unrecognized" warnings here, we fall
|
|
back into the quick-grab loop below */
|
|
parse_start--;
|
|
goto defchar;
|
|
}
|
|
break;
|
|
|
|
case '#':
|
|
if (RExC_flags & RXf_PMf_EXTENDED) {
|
|
if ( reg_skipcomment( pRExC_state ) )
|
|
goto tryagain;
|
|
}
|
|
/* FALL THROUGH */
|
|
|
|
default:
|
|
|
|
parse_start = RExC_parse - 1;
|
|
|
|
RExC_parse++;
|
|
|
|
defchar: {
|
|
register STRLEN len;
|
|
register UV ender;
|
|
register char *p;
|
|
char *s;
|
|
STRLEN foldlen;
|
|
U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
|
|
U8 node_type;
|
|
|
|
/* Is this a LATIN LOWER CASE SHARP S in an EXACTFU node? If so,
|
|
* it is folded to 'ss' even if not utf8 */
|
|
bool is_exactfu_sharp_s;
|
|
|
|
ender = 0;
|
|
node_type = ((! FOLD) ? EXACT
|
|
: (LOC)
|
|
? EXACTFL
|
|
: (MORE_ASCII_RESTRICTED)
|
|
? EXACTFA
|
|
: (AT_LEAST_UNI_SEMANTICS)
|
|
? EXACTFU
|
|
: EXACTF);
|
|
ret = reg_node(pRExC_state, node_type);
|
|
s = STRING(ret);
|
|
|
|
/* XXX The node can hold up to 255 bytes, yet this only goes to
|
|
* 127. I (khw) do not know why. Keeping it somewhat less than
|
|
* 255 allows us to not have to worry about overflow due to
|
|
* converting to utf8 and fold expansion, but that value is
|
|
* 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
|
|
* split up by this limit into a single one using the real max of
|
|
* 255. Even at 127, this breaks under rare circumstances. If
|
|
* folding, we do not want to split a node at a character that is a
|
|
* non-final in a multi-char fold, as an input string could just
|
|
* happen to want to match across the node boundary. The join
|
|
* would solve that problem if the join actually happens. But a
|
|
* series of more than two nodes in a row each of 127 would cause
|
|
* the first join to succeed to get to 254, but then there wouldn't
|
|
* be room for the next one, which could at be one of those split
|
|
* multi-char folds. I don't know of any fool-proof solution. One
|
|
* could back off to end with only a code point that isn't such a
|
|
* non-final, but it is possible for there not to be any in the
|
|
* entire node. */
|
|
for (len = 0, p = RExC_parse - 1;
|
|
len < 127 && p < RExC_end;
|
|
len++)
|
|
{
|
|
char * const oldp = p;
|
|
|
|
if (RExC_flags & RXf_PMf_EXTENDED)
|
|
p = regwhite( pRExC_state, p );
|
|
switch ((U8)*p) {
|
|
case '^':
|
|
case '$':
|
|
case '.':
|
|
case '[':
|
|
case '(':
|
|
case ')':
|
|
case '|':
|
|
goto loopdone;
|
|
case '\\':
|
|
/* Literal Escapes Switch
|
|
|
|
This switch is meant to handle escape sequences that
|
|
resolve to a literal character.
|
|
|
|
Every escape sequence that represents something
|
|
else, like an assertion or a char class, is handled
|
|
in the switch marked 'Special Escapes' above in this
|
|
routine, but also has an entry here as anything that
|
|
isn't explicitly mentioned here will be treated as
|
|
an unescaped equivalent literal.
|
|
*/
|
|
|
|
switch ((U8)*++p) {
|
|
/* These are all the special escapes. */
|
|
case 'A': /* Start assertion */
|
|
case 'b': case 'B': /* Word-boundary assertion*/
|
|
case 'C': /* Single char !DANGEROUS! */
|
|
case 'd': case 'D': /* digit class */
|
|
case 'g': case 'G': /* generic-backref, pos assertion */
|
|
case 'h': case 'H': /* HORIZWS */
|
|
case 'k': case 'K': /* named backref, keep marker */
|
|
case 'N': /* named char sequence */
|
|
case 'p': case 'P': /* Unicode property */
|
|
case 'R': /* LNBREAK */
|
|
case 's': case 'S': /* space class */
|
|
case 'v': case 'V': /* VERTWS */
|
|
case 'w': case 'W': /* word class */
|
|
case 'X': /* eXtended Unicode "combining character sequence" */
|
|
case 'z': case 'Z': /* End of line/string assertion */
|
|
--p;
|
|
goto loopdone;
|
|
|
|
/* Anything after here is an escape that resolves to a
|
|
literal. (Except digits, which may or may not)
|
|
*/
|
|
case 'n':
|
|
ender = '\n';
|
|
p++;
|
|
break;
|
|
case 'r':
|
|
ender = '\r';
|
|
p++;
|
|
break;
|
|
case 't':
|
|
ender = '\t';
|
|
p++;
|
|
break;
|
|
case 'f':
|
|
ender = '\f';
|
|
p++;
|
|
break;
|
|
case 'e':
|
|
ender = ASCII_TO_NATIVE('\033');
|
|
p++;
|
|
break;
|
|
case 'a':
|
|
ender = ASCII_TO_NATIVE('\007');
|
|
p++;
|
|
break;
|
|
case 'o':
|
|
{
|
|
STRLEN brace_len = len;
|
|
UV result;
|
|
const char* error_msg;
|
|
|
|
bool valid = grok_bslash_o(p,
|
|
&result,
|
|
&brace_len,
|
|
&error_msg,
|
|
1);
|
|
p += brace_len;
|
|
if (! valid) {
|
|
RExC_parse = p; /* going to die anyway; point
|
|
to exact spot of failure */
|
|
vFAIL(error_msg);
|
|
}
|
|
else
|
|
{
|
|
ender = result;
|
|
}
|
|
if (PL_encoding && ender < 0x100) {
|
|
goto recode_encoding;
|
|
}
|
|
if (ender > 0xff) {
|
|
REQUIRE_UTF8;
|
|
}
|
|
break;
|
|
}
|
|
case 'x':
|
|
if (*++p == '{') {
|
|
char* const e = strchr(p, '}');
|
|
|
|
if (!e) {
|
|
RExC_parse = p + 1;
|
|
vFAIL("Missing right brace on \\x{}");
|
|
}
|
|
else {
|
|
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
|
|
| PERL_SCAN_DISALLOW_PREFIX;
|
|
STRLEN numlen = e - p - 1;
|
|
ender = grok_hex(p + 1, &numlen, &flags, NULL);
|
|
if (ender > 0xff)
|
|
REQUIRE_UTF8;
|
|
p = e + 1;
|
|
}
|
|
}
|
|
else {
|
|
I32 flags = PERL_SCAN_DISALLOW_PREFIX;
|
|
STRLEN numlen = 2;
|
|
ender = grok_hex(p, &numlen, &flags, NULL);
|
|
p += numlen;
|
|
}
|
|
if (PL_encoding && ender < 0x100)
|
|
goto recode_encoding;
|
|
break;
|
|
case 'c':
|
|
p++;
|
|
ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
|
|
break;
|
|
case '0': case '1': case '2': case '3':case '4':
|
|
case '5': case '6': case '7': case '8':case '9':
|
|
if (*p == '0' ||
|
|
(isDIGIT(p[1]) && atoi(p) >= RExC_npar))
|
|
{
|
|
I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
|
|
STRLEN numlen = 3;
|
|
ender = grok_oct(p, &numlen, &flags, NULL);
|
|
if (ender > 0xff) {
|
|
REQUIRE_UTF8;
|
|
}
|
|
p += numlen;
|
|
}
|
|
else {
|
|
--p;
|
|
goto loopdone;
|
|
}
|
|
if (PL_encoding && ender < 0x100)
|
|
goto recode_encoding;
|
|
break;
|
|
recode_encoding:
|
|
if (! RExC_override_recoding) {
|
|
SV* enc = PL_encoding;
|
|
ender = reg_recode((const char)(U8)ender, &enc);
|
|
if (!enc && SIZE_ONLY)
|
|
ckWARNreg(p, "Invalid escape in the specified encoding");
|
|
REQUIRE_UTF8;
|
|
}
|
|
break;
|
|
case '\0':
|
|
if (p >= RExC_end)
|
|
FAIL("Trailing \\");
|
|
/* FALL THROUGH */
|
|
default:
|
|
if (!SIZE_ONLY&& isALPHA(*p)) {
|
|
ckWARN2reg(p + 1, "Unrecognized escape \\%.1s passed through", p);
|
|
}
|
|
goto normal_default;
|
|
}
|
|
break;
|
|
case '{':
|
|
/* Currently we don't warn when the lbrace is at the start
|
|
* of a construct. This catches it in the middle of a
|
|
* literal string, or when its the first thing after
|
|
* something like "\b" */
|
|
if (! SIZE_ONLY
|
|
&& (len || (p > RExC_start && isALPHA_A(*(p -1)))))
|
|
{
|
|
ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
|
|
}
|
|
/*FALLTHROUGH*/
|
|
default:
|
|
normal_default:
|
|
if (UTF8_IS_START(*p) && UTF) {
|
|
STRLEN numlen;
|
|
ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
|
|
&numlen, UTF8_ALLOW_DEFAULT);
|
|
p += numlen;
|
|
}
|
|
else
|
|
ender = (U8) *p++;
|
|
break;
|
|
} /* End of switch on the literal */
|
|
|
|
is_exactfu_sharp_s = (node_type == EXACTFU
|
|
&& ender == LATIN_SMALL_LETTER_SHARP_S);
|
|
if ( RExC_flags & RXf_PMf_EXTENDED)
|
|
p = regwhite( pRExC_state, p );
|
|
if ((UTF && FOLD) || is_exactfu_sharp_s) {
|
|
/* Prime the casefolded buffer. Locale rules, which apply
|
|
* only to code points < 256, aren't known until execution,
|
|
* so for them, just output the original character using
|
|
* utf8. If we start to fold non-UTF patterns, be sure to
|
|
* update join_exact() */
|
|
if (LOC && ender < 256) {
|
|
if (UNI_IS_INVARIANT(ender)) {
|
|
*tmpbuf = (U8) ender;
|
|
foldlen = 1;
|
|
} else {
|
|
*tmpbuf = UTF8_TWO_BYTE_HI(ender);
|
|
*(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
|
|
foldlen = 2;
|
|
}
|
|
}
|
|
else if (isASCII(ender)) { /* Note: Here can't also be LOC
|
|
*/
|
|
ender = toLOWER(ender);
|
|
*tmpbuf = (U8) ender;
|
|
foldlen = 1;
|
|
}
|
|
else if (! MORE_ASCII_RESTRICTED && ! LOC) {
|
|
|
|
/* Locale and /aa require more selectivity about the
|
|
* fold, so are handled below. Otherwise, here, just
|
|
* use the fold */
|
|
ender = toFOLD_uni(ender, tmpbuf, &foldlen);
|
|
}
|
|
else {
|
|
/* Under locale rules or /aa we are not to mix,
|
|
* respectively, ords < 256 or ASCII with non-. So
|
|
* reject folds that mix them, using only the
|
|
* non-folded code point. So do the fold to a
|
|
* temporary, and inspect each character in it. */
|
|
U8 trialbuf[UTF8_MAXBYTES_CASE+1];
|
|
U8* s = trialbuf;
|
|
UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
|
|
U8* e = s + foldlen;
|
|
bool fold_ok = TRUE;
|
|
|
|
while (s < e) {
|
|
if (isASCII(*s)
|
|
|| (LOC && (UTF8_IS_INVARIANT(*s)
|
|
|| UTF8_IS_DOWNGRADEABLE_START(*s))))
|
|
{
|
|
fold_ok = FALSE;
|
|
break;
|
|
}
|
|
s += UTF8SKIP(s);
|
|
}
|
|
if (fold_ok) {
|
|
Copy(trialbuf, tmpbuf, foldlen, U8);
|
|
ender = tmpender;
|
|
}
|
|
else {
|
|
uvuni_to_utf8(tmpbuf, ender);
|
|
foldlen = UNISKIP(ender);
|
|
}
|
|
}
|
|
}
|
|
if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
|
|
if (len)
|
|
p = oldp;
|
|
else if (UTF || is_exactfu_sharp_s) {
|
|
if (FOLD) {
|
|
/* Emit all the Unicode characters. */
|
|
STRLEN numlen;
|
|
for (foldbuf = tmpbuf;
|
|
foldlen;
|
|
foldlen -= numlen) {
|
|
|
|
/* tmpbuf has been constructed by us, so we
|
|
* know it is valid utf8 */
|
|
ender = valid_utf8_to_uvchr(foldbuf, &numlen);
|
|
if (numlen > 0) {
|
|
const STRLEN unilen = reguni(pRExC_state, ender, s);
|
|
s += unilen;
|
|
len += unilen;
|
|
/* In EBCDIC the numlen
|
|
* and unilen can differ. */
|
|
foldbuf += numlen;
|
|
if (numlen >= foldlen)
|
|
break;
|
|
}
|
|
else
|
|
break; /* "Can't happen." */
|
|
}
|
|
}
|
|
else {
|
|
const STRLEN unilen = reguni(pRExC_state, ender, s);
|
|
if (unilen > 0) {
|
|
s += unilen;
|
|
len += unilen;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
len++;
|
|
REGC((char)ender, s++);
|
|
}
|
|
break;
|
|
}
|
|
if (UTF || is_exactfu_sharp_s) {
|
|
if (FOLD) {
|
|
/* Emit all the Unicode characters. */
|
|
STRLEN numlen;
|
|
for (foldbuf = tmpbuf;
|
|
foldlen;
|
|
foldlen -= numlen) {
|
|
ender = valid_utf8_to_uvchr(foldbuf, &numlen);
|
|
if (numlen > 0) {
|
|
const STRLEN unilen = reguni(pRExC_state, ender, s);
|
|
len += unilen;
|
|
s += unilen;
|
|
/* In EBCDIC the numlen
|
|
* and unilen can differ. */
|
|
foldbuf += numlen;
|
|
if (numlen >= foldlen)
|
|
break;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
const STRLEN unilen = reguni(pRExC_state, ender, s);
|
|
if (unilen > 0) {
|
|
s += unilen;
|
|
len += unilen;
|
|
}
|
|
}
|
|
len--;
|
|
}
|
|
else {
|
|
REGC((char)ender, s++);
|
|
}
|
|
}
|
|
loopdone: /* Jumped to when encounters something that shouldn't be in
|
|
the node */
|
|
RExC_parse = p - 1;
|
|
Set_Node_Cur_Length(ret); /* MJD */
|
|
nextchar(pRExC_state);
|
|
{
|
|
/* len is STRLEN which is unsigned, need to copy to signed */
|
|
IV iv = len;
|
|
if (iv < 0)
|
|
vFAIL("Internal disaster");
|
|
}
|
|
if (len > 0)
|
|
*flagp |= HASWIDTH;
|
|
if (len == 1 && UNI_IS_INVARIANT(ender))
|
|
*flagp |= SIMPLE;
|
|
|
|
if (SIZE_ONLY)
|
|
RExC_size += STR_SZ(len);
|
|
else {
|
|
STR_LEN(ret) = len;
|
|
RExC_emit += STR_SZ(len);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
return(ret);
|
|
|
|
/* Jumped to when an unrecognized character set is encountered */
|
|
bad_charset:
|
|
Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
|
|
return(NULL);
|
|
}
|
|
|
|
STATIC char *
|
|
S_regwhite( RExC_state_t *pRExC_state, char *p )
|
|
{
|
|
const char *e = RExC_end;
|
|
|
|
PERL_ARGS_ASSERT_REGWHITE;
|
|
|
|
while (p < e) {
|
|
if (isSPACE(*p))
|
|
++p;
|
|
else if (*p == '#') {
|
|
bool ended = 0;
|
|
do {
|
|
if (*p++ == '\n') {
|
|
ended = 1;
|
|
break;
|
|
}
|
|
} while (p < e);
|
|
if (!ended)
|
|
RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
|
|
Character classes ([:foo:]) can also be negated ([:^foo:]).
|
|
Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
|
|
Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
|
|
but trigger failures because they are currently unimplemented. */
|
|
|
|
#define POSIXCC_DONE(c) ((c) == ':')
|
|
#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
|
|
#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
|
|
|
|
STATIC I32
|
|
S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
|
|
{
|
|
dVAR;
|
|
I32 namedclass = OOB_NAMEDCLASS;
|
|
|
|
PERL_ARGS_ASSERT_REGPPOSIXCC;
|
|
|
|
if (value == '[' && RExC_parse + 1 < RExC_end &&
|
|
/* I smell either [: or [= or [. -- POSIX has been here, right? */
|
|
POSIXCC(UCHARAT(RExC_parse))) {
|
|
const char c = UCHARAT(RExC_parse);
|
|
char* const s = RExC_parse++;
|
|
|
|
while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
|
|
RExC_parse++;
|
|
if (RExC_parse == RExC_end)
|
|
/* Grandfather lone [:, [=, [. */
|
|
RExC_parse = s;
|
|
else {
|
|
const char* const t = RExC_parse++; /* skip over the c */
|
|
assert(*t == c);
|
|
|
|
if (UCHARAT(RExC_parse) == ']') {
|
|
const char *posixcc = s + 1;
|
|
RExC_parse++; /* skip over the ending ] */
|
|
|
|
if (*s == ':') {
|
|
const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
|
|
const I32 skip = t - posixcc;
|
|
|
|
/* Initially switch on the length of the name. */
|
|
switch (skip) {
|
|
case 4:
|
|
if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
|
|
namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
|
|
break;
|
|
case 5:
|
|
/* Names all of length 5. */
|
|
/* alnum alpha ascii blank cntrl digit graph lower
|
|
print punct space upper */
|
|
/* Offset 4 gives the best switch position. */
|
|
switch (posixcc[4]) {
|
|
case 'a':
|
|
if (memEQ(posixcc, "alph", 4)) /* alpha */
|
|
namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
|
|
break;
|
|
case 'e':
|
|
if (memEQ(posixcc, "spac", 4)) /* space */
|
|
namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
|
|
break;
|
|
case 'h':
|
|
if (memEQ(posixcc, "grap", 4)) /* graph */
|
|
namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
|
|
break;
|
|
case 'i':
|
|
if (memEQ(posixcc, "asci", 4)) /* ascii */
|
|
namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
|
|
break;
|
|
case 'k':
|
|
if (memEQ(posixcc, "blan", 4)) /* blank */
|
|
namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
|
|
break;
|
|
case 'l':
|
|
if (memEQ(posixcc, "cntr", 4)) /* cntrl */
|
|
namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
|
|
break;
|
|
case 'm':
|
|
if (memEQ(posixcc, "alnu", 4)) /* alnum */
|
|
namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
|
|
break;
|
|
case 'r':
|
|
if (memEQ(posixcc, "lowe", 4)) /* lower */
|
|
namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
|
|
else if (memEQ(posixcc, "uppe", 4)) /* upper */
|
|
namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
|
|
break;
|
|
case 't':
|
|
if (memEQ(posixcc, "digi", 4)) /* digit */
|
|
namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
|
|
else if (memEQ(posixcc, "prin", 4)) /* print */
|
|
namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
|
|
else if (memEQ(posixcc, "punc", 4)) /* punct */
|
|
namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
|
|
break;
|
|
}
|
|
break;
|
|
case 6:
|
|
if (memEQ(posixcc, "xdigit", 6))
|
|
namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
|
|
break;
|
|
}
|
|
|
|
if (namedclass == OOB_NAMEDCLASS)
|
|
Simple_vFAIL3("POSIX class [:%.*s:] unknown",
|
|
t - s - 1, s + 1);
|
|
assert (posixcc[skip] == ':');
|
|
assert (posixcc[skip+1] == ']');
|
|
} else if (!SIZE_ONLY) {
|
|
/* [[=foo=]] and [[.foo.]] are still future. */
|
|
|
|
/* adjust RExC_parse so the warning shows after
|
|
the class closes */
|
|
while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
|
|
RExC_parse++;
|
|
Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
|
|
}
|
|
} else {
|
|
/* Maternal grandfather:
|
|
* "[:" ending in ":" but not in ":]" */
|
|
RExC_parse = s;
|
|
}
|
|
}
|
|
}
|
|
|
|
return namedclass;
|
|
}
|
|
|
|
STATIC void
|
|
S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
|
|
{
|
|
dVAR;
|
|
|
|
PERL_ARGS_ASSERT_CHECKPOSIXCC;
|
|
|
|
if (POSIXCC(UCHARAT(RExC_parse))) {
|
|
const char *s = RExC_parse;
|
|
const char c = *s++;
|
|
|
|
while (isALNUM(*s))
|
|
s++;
|
|
if (*s && c == *s && s[1] == ']') {
|
|
ckWARN3reg(s+2,
|
|
"POSIX syntax [%c %c] belongs inside character classes",
|
|
c, c);
|
|
|
|
/* [[=foo=]] and [[.foo.]] are still future. */
|
|
if (POSIXCC_NOTYET(c)) {
|
|
/* adjust RExC_parse so the error shows after
|
|
the class closes */
|
|
while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
|
|
NOOP;
|
|
Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Generate the code to add a full posix character <class> to the bracketed
|
|
* character class given by <node>. (<node> is needed only under locale rules)
|
|
* destlist is the inversion list for non-locale rules that this class is
|
|
* to be added to
|
|
* sourcelist is the ASCII-range inversion list to add under /a rules
|
|
* Xsourcelist is the full Unicode range list to use otherwise. */
|
|
#define DO_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
|
|
if (LOC) { \
|
|
SV* scratch_list = NULL; \
|
|
\
|
|
/* Set this class in the node for runtime matching */ \
|
|
ANYOF_CLASS_SET(node, class); \
|
|
\
|
|
/* For above Latin1 code points, we use the full Unicode range */ \
|
|
_invlist_intersection(PL_AboveLatin1, \
|
|
Xsourcelist, \
|
|
&scratch_list); \
|
|
/* And set the output to it, adding instead if there already is an \
|
|
* output. Checking if <destlist> is NULL first saves an extra \
|
|
* clone. Its reference count will be decremented at the next \
|
|
* union, etc, or if this is the only instance, at the end of the \
|
|
* routine */ \
|
|
if (! destlist) { \
|
|
destlist = scratch_list; \
|
|
} \
|
|
else { \
|
|
_invlist_union(destlist, scratch_list, &destlist); \
|
|
SvREFCNT_dec(scratch_list); \
|
|
} \
|
|
} \
|
|
else { \
|
|
/* For non-locale, just add it to any existing list */ \
|
|
_invlist_union(destlist, \
|
|
(AT_LEAST_ASCII_RESTRICTED) \
|
|
? sourcelist \
|
|
: Xsourcelist, \
|
|
&destlist); \
|
|
}
|
|
|
|
/* Like DO_POSIX, but matches the complement of <sourcelist> and <Xsourcelist>.
|
|
*/
|
|
#define DO_N_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
|
|
if (LOC) { \
|
|
SV* scratch_list = NULL; \
|
|
ANYOF_CLASS_SET(node, class); \
|
|
_invlist_subtract(PL_AboveLatin1, Xsourcelist, &scratch_list); \
|
|
if (! destlist) { \
|
|
destlist = scratch_list; \
|
|
} \
|
|
else { \
|
|
_invlist_union(destlist, scratch_list, &destlist); \
|
|
SvREFCNT_dec(scratch_list); \
|
|
} \
|
|
} \
|
|
else { \
|
|
_invlist_union_complement_2nd(destlist, \
|
|
(AT_LEAST_ASCII_RESTRICTED) \
|
|
? sourcelist \
|
|
: Xsourcelist, \
|
|
&destlist); \
|
|
/* Under /d, everything in the upper half of the Latin1 range \
|
|
* matches this complement */ \
|
|
if (DEPENDS_SEMANTICS) { \
|
|
ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
|
|
} \
|
|
}
|
|
|
|
/* Generate the code to add a posix character <class> to the bracketed
|
|
* character class given by <node>. (<node> is needed only under locale rules)
|
|
* destlist is the inversion list for non-locale rules that this class is
|
|
* to be added to
|
|
* sourcelist is the ASCII-range inversion list to add under /a rules
|
|
* l1_sourcelist is the Latin1 range list to use otherwise.
|
|
* Xpropertyname is the name to add to <run_time_list> of the property to
|
|
* specify the code points above Latin1 that will have to be
|
|
* determined at run-time
|
|
* run_time_list is a SV* that contains text names of properties that are to
|
|
* be computed at run time. This concatenates <Xpropertyname>
|
|
* to it, apppropriately
|
|
* This is essentially DO_POSIX, but we know only the Latin1 values at compile
|
|
* time */
|
|
#define DO_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
|
|
l1_sourcelist, Xpropertyname, run_time_list) \
|
|
/* First, resolve whether to use the ASCII-only list or the L1 \
|
|
* list */ \
|
|
DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, \
|
|
((AT_LEAST_ASCII_RESTRICTED) ? sourcelist : l1_sourcelist),\
|
|
Xpropertyname, run_time_list)
|
|
|
|
#define DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, sourcelist, \
|
|
Xpropertyname, run_time_list) \
|
|
/* If not /a matching, there are going to be code points we will have \
|
|
* to defer to runtime to look-up */ \
|
|
if (! AT_LEAST_ASCII_RESTRICTED) { \
|
|
Perl_sv_catpvf(aTHX_ run_time_list, "+utf8::%s\n", Xpropertyname); \
|
|
} \
|
|
if (LOC) { \
|
|
ANYOF_CLASS_SET(node, class); \
|
|
} \
|
|
else { \
|
|
_invlist_union(destlist, sourcelist, &destlist); \
|
|
}
|
|
|
|
/* Like DO_POSIX_LATIN1_ONLY_KNOWN, but for the complement. A combination of
|
|
* this and DO_N_POSIX */
|
|
#define DO_N_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
|
|
l1_sourcelist, Xpropertyname, run_time_list) \
|
|
if (AT_LEAST_ASCII_RESTRICTED) { \
|
|
_invlist_union_complement_2nd(destlist, sourcelist, &destlist); \
|
|
} \
|
|
else { \
|
|
Perl_sv_catpvf(aTHX_ run_time_list, "!utf8::%s\n", Xpropertyname); \
|
|
if (LOC) { \
|
|
ANYOF_CLASS_SET(node, namedclass); \
|
|
} \
|
|
else { \
|
|
SV* scratch_list = NULL; \
|
|
_invlist_subtract(PL_Latin1, l1_sourcelist, &scratch_list); \
|
|
if (! destlist) { \
|
|
destlist = scratch_list; \
|
|
} \
|
|
else { \
|
|
_invlist_union(destlist, scratch_list, &destlist); \
|
|
SvREFCNT_dec(scratch_list); \
|
|
} \
|
|
if (DEPENDS_SEMANTICS) { \
|
|
ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
STATIC U8
|
|
S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
|
|
{
|
|
|
|
/* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
|
|
* Locale folding is done at run-time, so this function should not be
|
|
* called for nodes that are for locales.
|
|
*
|
|
* This function sets the bit corresponding to the fold of the input
|
|
* 'value', if not already set. The fold of 'f' is 'F', and the fold of
|
|
* 'F' is 'f'.
|
|
*
|
|
* It also knows about the characters that are in the bitmap that have
|
|
* folds that are matchable only outside it, and sets the appropriate lists
|
|
* and flags.
|
|
*
|
|
* It returns the number of bits that actually changed from 0 to 1 */
|
|
|
|
U8 stored = 0;
|
|
U8 fold;
|
|
|
|
PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
|
|
|
|
fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
|
|
: PL_fold[value];
|
|
|
|
/* It assumes the bit for 'value' has already been set */
|
|
if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
|
|
ANYOF_BITMAP_SET(node, fold);
|
|
stored++;
|
|
}
|
|
if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
|
|
/* Certain Latin1 characters have matches outside the bitmap. To get
|
|
* here, 'value' is one of those characters. None of these matches is
|
|
* valid for ASCII characters under /aa, which have been excluded by
|
|
* the 'if' above. The matches fall into three categories:
|
|
* 1) They are singly folded-to or -from an above 255 character, as
|
|
* LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
|
|
* WITH DIAERESIS;
|
|
* 2) They are part of a multi-char fold with another character in the
|
|
* bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
|
|
* 3) They are part of a multi-char fold with a character not in the
|
|
* bitmap, such as various ligatures.
|
|
* We aren't dealing fully with multi-char folds, except we do deal
|
|
* with the pattern containing a character that has a multi-char fold
|
|
* (not so much the inverse).
|
|
* For types 1) and 3), the matches only happen when the target string
|
|
* is utf8; that's not true for 2), and we set a flag for it.
|
|
*
|
|
* The code below adds to the passed in inversion list the single fold
|
|
* closures for 'value'. The values are hard-coded here so that an
|
|
* innocent-looking character class, like /[ks]/i won't have to go out
|
|
* to disk to find the possible matches. XXX It would be better to
|
|
* generate these via regen, in case a new version of the Unicode
|
|
* standard adds new mappings, though that is not really likely. */
|
|
switch (value) {
|
|
case 'k':
|
|
case 'K':
|
|
/* KELVIN SIGN */
|
|
*invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
|
|
break;
|
|
case 's':
|
|
case 'S':
|
|
/* LATIN SMALL LETTER LONG S */
|
|
*invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
|
|
break;
|
|
case MICRO_SIGN:
|
|
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
|
|
GREEK_SMALL_LETTER_MU);
|
|
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
|
|
GREEK_CAPITAL_LETTER_MU);
|
|
break;
|
|
case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
|
|
case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
|
|
/* ANGSTROM SIGN */
|
|
*invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
|
|
if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
|
|
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
|
|
PL_fold_latin1[value]);
|
|
}
|
|
break;
|
|
case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
|
|
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
|
|
LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
|
|
break;
|
|
case LATIN_SMALL_LETTER_SHARP_S:
|
|
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
|
|
LATIN_CAPITAL_LETTER_SHARP_S);
|
|
|
|
/* Under /a, /d, and /u, this can match the two chars "ss" */
|
|
if (! MORE_ASCII_RESTRICTED) {
|
|
add_alternate(alternate_ptr, (U8 *) "ss", 2);
|
|
|
|
/* And under /u or /a, it can match even if the target is
|
|
* not utf8 */
|
|
if (AT_LEAST_UNI_SEMANTICS) {
|
|
ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
|
|
}
|
|
}
|
|
break;
|
|
case 'F': case 'f':
|
|
case 'I': case 'i':
|
|
case 'L': case 'l':
|
|
case 'T': case 't':
|
|
case 'A': case 'a':
|
|
case 'H': case 'h':
|
|
case 'J': case 'j':
|
|
case 'N': case 'n':
|
|
case 'W': case 'w':
|
|
case 'Y': case 'y':
|
|
/* These all are targets of multi-character folds from code
|
|
* points that require UTF8 to express, so they can't match
|
|
* unless the target string is in UTF-8, so no action here is
|
|
* necessary, as regexec.c properly handles the general case
|
|
* for UTF-8 matching */
|
|
break;
|
|
default:
|
|
/* Use deprecated warning to increase the chances of this
|
|
* being output */
|
|
ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
|
|
break;
|
|
}
|
|
}
|
|
else if (DEPENDS_SEMANTICS
|
|
&& ! isASCII(value)
|
|
&& PL_fold_latin1[value] != value)
|
|
{
|
|
/* Under DEPENDS rules, non-ASCII Latin1 characters match their
|
|
* folds only when the target string is in UTF-8. We add the fold
|
|
* here to the list of things to match outside the bitmap, which
|
|
* won't be looked at unless it is UTF8 (or else if something else
|
|
* says to look even if not utf8, but those things better not happen
|
|
* under DEPENDS semantics. */
|
|
*invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
|
|
}
|
|
|
|
return stored;
|
|
}
|
|
|
|
|
|
PERL_STATIC_INLINE U8
|
|
S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
|
|
{
|
|
/* This inline function sets a bit in the bitmap if not already set, and if
|
|
* appropriate, its fold, returning the number of bits that actually
|
|
* changed from 0 to 1 */
|
|
|
|
U8 stored;
|
|
|
|
PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
|
|
|
|
if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
|
|
return 0;
|
|
}
|
|
|
|
ANYOF_BITMAP_SET(node, value);
|
|
stored = 1;
|
|
|
|
if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
|
|
stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
|
|
}
|
|
|
|
return stored;
|
|
}
|
|
|
|
STATIC void
|
|
S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
|
|
{
|
|
/* Adds input 'string' with length 'len' to the ANYOF node's unicode
|
|
* alternate list, pointed to by 'alternate_ptr'. This is an array of
|
|
* the multi-character folds of characters in the node */
|
|
SV *sv;
|
|
|
|
PERL_ARGS_ASSERT_ADD_ALTERNATE;
|
|
|
|
if (! *alternate_ptr) {
|
|
*alternate_ptr = newAV();
|
|
}
|
|
sv = newSVpvn_utf8((char*)string, len, TRUE);
|
|
av_push(*alternate_ptr, sv);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
parse a class specification and produce either an ANYOF node that
|
|
matches the pattern or perhaps will be optimized into an EXACTish node
|
|
instead. The node contains a bit map for the first 256 characters, with the
|
|
corresponding bit set if that character is in the list. For characters
|
|
above 255, a range list is used */
|
|
|
|
STATIC regnode *
|
|
S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
|
|
{
|
|
dVAR;
|
|
register UV nextvalue;
|
|
register IV prevvalue = OOB_UNICODE;
|
|
register IV range = 0;
|
|
UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
|
|
register regnode *ret;
|
|
STRLEN numlen;
|
|
IV namedclass;
|
|
char *rangebegin = NULL;
|
|
bool need_class = 0;
|
|
bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
|
|
SV *listsv = NULL;
|
|
STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
|
|
than just initialized. */
|
|
SV* properties = NULL; /* Code points that match \p{} \P{} */
|
|
UV element_count = 0; /* Number of distinct elements in the class.
|
|
Optimizations may be possible if this is tiny */
|
|
UV n;
|
|
|
|
/* Unicode properties are stored in a swash; this holds the current one
|
|
* being parsed. If this swash is the only above-latin1 component of the
|
|
* character class, an optimization is to pass it directly on to the
|
|
* execution engine. Otherwise, it is set to NULL to indicate that there
|
|
* are other things in the class that have to be dealt with at execution
|
|
* time */
|
|
SV* swash = NULL; /* Code points that match \p{} \P{} */
|
|
|
|
/* Set if a component of this character class is user-defined; just passed
|
|
* on to the engine */
|
|
UV has_user_defined_property = 0;
|
|
|
|
/* code points this node matches that can't be stored in the bitmap */
|
|
SV* nonbitmap = NULL;
|
|
|
|
/* The items that are to match that aren't stored in the bitmap, but are a
|
|
* result of things that are stored there. This is the fold closure of
|
|
* such a character, either because it has DEPENDS semantics and shouldn't
|
|
* be matched unless the target string is utf8, or is a code point that is
|
|
* too large for the bit map, as for example, the fold of the MICRO SIGN is
|
|
* above 255. This all is solely for performance reasons. By having this
|
|
* code know the outside-the-bitmap folds that the bitmapped characters are
|
|
* involved with, we don't have to go out to disk to find the list of
|
|
* matches, unless the character class includes code points that aren't
|
|
* storable in the bit map. That means that a character class with an 's'
|
|
* in it, for example, doesn't need to go out to disk to find everything
|
|
* that matches. A 2nd list is used so that the 'nonbitmap' list is kept
|
|
* empty unless there is something whose fold we don't know about, and will
|
|
* have to go out to the disk to find. */
|
|
SV* l1_fold_invlist = NULL;
|
|
|
|
/* List of multi-character folds that are matched by this node */
|
|
AV* unicode_alternate = NULL;
|
|
#ifdef EBCDIC
|
|
UV literal_endpoint = 0;
|
|
#endif
|
|
UV stored = 0; /* how many chars stored in the bitmap */
|
|
|
|
regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
|
|
case we need to change the emitted regop to an EXACT. */
|
|
const char * orig_parse = RExC_parse;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGCLASS;
|
|
#ifndef DEBUGGING
|
|
PERL_UNUSED_ARG(depth);
|
|
#endif
|
|
|
|
DEBUG_PARSE("clas");
|
|
|
|
/* Assume we are going to generate an ANYOF node. */
|
|
ret = reganode(pRExC_state, ANYOF, 0);
|
|
|
|
|
|
if (!SIZE_ONLY) {
|
|
ANYOF_FLAGS(ret) = 0;
|
|
}
|
|
|
|
if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
|
|
RExC_naughty++;
|
|
RExC_parse++;
|
|
if (!SIZE_ONLY)
|
|
ANYOF_FLAGS(ret) |= ANYOF_INVERT;
|
|
|
|
/* We have decided to not allow multi-char folds in inverted character
|
|
* classes, due to the confusion that can happen, especially with
|
|
* classes that are designed for a non-Unicode world: You have the
|
|
* peculiar case that:
|
|
"s s" =~ /^[^\xDF]+$/i => Y
|
|
"ss" =~ /^[^\xDF]+$/i => N
|
|
*
|
|
* See [perl #89750] */
|
|
allow_full_fold = FALSE;
|
|
}
|
|
|
|
if (SIZE_ONLY) {
|
|
RExC_size += ANYOF_SKIP;
|
|
listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
|
|
}
|
|
else {
|
|
RExC_emit += ANYOF_SKIP;
|
|
if (LOC) {
|
|
ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
|
|
}
|
|
ANYOF_BITMAP_ZERO(ret);
|
|
listsv = newSVpvs("# comment\n");
|
|
initial_listsv_len = SvCUR(listsv);
|
|
}
|
|
|
|
nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
|
|
|
|
if (!SIZE_ONLY && POSIXCC(nextvalue))
|
|
checkposixcc(pRExC_state);
|
|
|
|
/* allow 1st char to be ] (allowing it to be - is dealt with later) */
|
|
if (UCHARAT(RExC_parse) == ']')
|
|
goto charclassloop;
|
|
|
|
parseit:
|
|
while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
|
|
|
|
charclassloop:
|
|
|
|
namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
|
|
|
|
if (!range) {
|
|
rangebegin = RExC_parse;
|
|
element_count++;
|
|
}
|
|
if (UTF) {
|
|
value = utf8n_to_uvchr((U8*)RExC_parse,
|
|
RExC_end - RExC_parse,
|
|
&numlen, UTF8_ALLOW_DEFAULT);
|
|
RExC_parse += numlen;
|
|
}
|
|
else
|
|
value = UCHARAT(RExC_parse++);
|
|
|
|
nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
|
|
if (value == '[' && POSIXCC(nextvalue))
|
|
namedclass = regpposixcc(pRExC_state, value);
|
|
else if (value == '\\') {
|
|
if (UTF) {
|
|
value = utf8n_to_uvchr((U8*)RExC_parse,
|
|
RExC_end - RExC_parse,
|
|
&numlen, UTF8_ALLOW_DEFAULT);
|
|
RExC_parse += numlen;
|
|
}
|
|
else
|
|
value = UCHARAT(RExC_parse++);
|
|
/* Some compilers cannot handle switching on 64-bit integer
|
|
* values, therefore value cannot be an UV. Yes, this will
|
|
* be a problem later if we want switch on Unicode.
|
|
* A similar issue a little bit later when switching on
|
|
* namedclass. --jhi */
|
|
switch ((I32)value) {
|
|
case 'w': namedclass = ANYOF_ALNUM; break;
|
|
case 'W': namedclass = ANYOF_NALNUM; break;
|
|
case 's': namedclass = ANYOF_SPACE; break;
|
|
case 'S': namedclass = ANYOF_NSPACE; break;
|
|
case 'd': namedclass = ANYOF_DIGIT; break;
|
|
case 'D': namedclass = ANYOF_NDIGIT; break;
|
|
case 'v': namedclass = ANYOF_VERTWS; break;
|
|
case 'V': namedclass = ANYOF_NVERTWS; break;
|
|
case 'h': namedclass = ANYOF_HORIZWS; break;
|
|
case 'H': namedclass = ANYOF_NHORIZWS; break;
|
|
case 'N': /* Handle \N{NAME} in class */
|
|
{
|
|
/* We only pay attention to the first char of
|
|
multichar strings being returned. I kinda wonder
|
|
if this makes sense as it does change the behaviour
|
|
from earlier versions, OTOH that behaviour was broken
|
|
as well. */
|
|
UV v; /* value is register so we cant & it /grrr */
|
|
if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
|
|
goto parseit;
|
|
}
|
|
value= v;
|
|
}
|
|
break;
|
|
case 'p':
|
|
case 'P':
|
|
{
|
|
char *e;
|
|
if (RExC_parse >= RExC_end)
|
|
vFAIL2("Empty \\%c{}", (U8)value);
|
|
if (*RExC_parse == '{') {
|
|
const U8 c = (U8)value;
|
|
e = strchr(RExC_parse++, '}');
|
|
if (!e)
|
|
vFAIL2("Missing right brace on \\%c{}", c);
|
|
while (isSPACE(UCHARAT(RExC_parse)))
|
|
RExC_parse++;
|
|
if (e == RExC_parse)
|
|
vFAIL2("Empty \\%c{}", c);
|
|
n = e - RExC_parse;
|
|
while (isSPACE(UCHARAT(RExC_parse + n - 1)))
|
|
n--;
|
|
}
|
|
else {
|
|
e = RExC_parse;
|
|
n = 1;
|
|
}
|
|
if (!SIZE_ONLY) {
|
|
SV** invlistsvp;
|
|
SV* invlist;
|
|
char* name;
|
|
if (UCHARAT(RExC_parse) == '^') {
|
|
RExC_parse++;
|
|
n--;
|
|
value = value == 'p' ? 'P' : 'p'; /* toggle */
|
|
while (isSPACE(UCHARAT(RExC_parse))) {
|
|
RExC_parse++;
|
|
n--;
|
|
}
|
|
}
|
|
/* Try to get the definition of the property into
|
|
* <invlist>. If /i is in effect, the effective property
|
|
* will have its name be <__NAME_i>. The design is
|
|
* discussed in commit
|
|
* 2f833f5208e26b208886e51e09e2c072b5eabb46 */
|
|
Newx(name, n + sizeof("_i__\n"), char);
|
|
|
|
sprintf(name, "%s%.*s%s\n",
|
|
(FOLD) ? "__" : "",
|
|
(int)n,
|
|
RExC_parse,
|
|
(FOLD) ? "_i" : ""
|
|
);
|
|
|
|
/* Look up the property name, and get its swash and
|
|
* inversion list, if the property is found */
|
|
if (swash) {
|
|
SvREFCNT_dec(swash);
|
|
}
|
|
swash = _core_swash_init("utf8", name, &PL_sv_undef,
|
|
1, /* binary */
|
|
0, /* not tr/// */
|
|
TRUE, /* this routine will handle
|
|
undefined properties */
|
|
NULL, FALSE /* No inversion list */
|
|
);
|
|
if ( ! swash
|
|
|| ! SvROK(swash)
|
|
|| ! SvTYPE(SvRV(swash)) == SVt_PVHV
|
|
|| ! (invlistsvp =
|
|
hv_fetchs(MUTABLE_HV(SvRV(swash)),
|
|
"INVLIST", FALSE))
|
|
|| ! (invlist = *invlistsvp))
|
|
{
|
|
if (swash) {
|
|
SvREFCNT_dec(swash);
|
|
swash = NULL;
|
|
}
|
|
|
|
/* Here didn't find it. It could be a user-defined
|
|
* property that will be available at run-time. Add it
|
|
* to the list to look up then */
|
|
Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
|
|
(value == 'p' ? '+' : '!'),
|
|
name);
|
|
has_user_defined_property = 1;
|
|
|
|
/* We don't know yet, so have to assume that the
|
|
* property could match something in the Latin1 range,
|
|
* hence something that isn't utf8 */
|
|
ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
|
|
}
|
|
else {
|
|
|
|
/* Here, did get the swash and its inversion list. If
|
|
* the swash is from a user-defined property, then this
|
|
* whole character class should be regarded as such */
|
|
SV** user_defined_svp =
|
|
hv_fetchs(MUTABLE_HV(SvRV(swash)),
|
|
"USER_DEFINED", FALSE);
|
|
if (user_defined_svp) {
|
|
has_user_defined_property
|
|
|= SvUV(*user_defined_svp);
|
|
}
|
|
|
|
/* Invert if asking for the complement */
|
|
if (value == 'P') {
|
|
_invlist_union_complement_2nd(properties, invlist, &properties);
|
|
|
|
/* The swash can't be used as-is, because we've
|
|
* inverted things; delay removing it to here after
|
|
* have copied its invlist above */
|
|
SvREFCNT_dec(swash);
|
|
swash = NULL;
|
|
}
|
|
else {
|
|
_invlist_union(properties, invlist, &properties);
|
|
}
|
|
}
|
|
Safefree(name);
|
|
}
|
|
RExC_parse = e + 1;
|
|
namedclass = ANYOF_MAX; /* no official name, but it's named */
|
|
|
|
/* \p means they want Unicode semantics */
|
|
RExC_uni_semantics = 1;
|
|
}
|
|
break;
|
|
case 'n': value = '\n'; break;
|
|
case 'r': value = '\r'; break;
|
|
case 't': value = '\t'; break;
|
|
case 'f': value = '\f'; break;
|
|
case 'b': value = '\b'; break;
|
|
case 'e': value = ASCII_TO_NATIVE('\033');break;
|
|
case 'a': value = ASCII_TO_NATIVE('\007');break;
|
|
case 'o':
|
|
RExC_parse--; /* function expects to be pointed at the 'o' */
|
|
{
|
|
const char* error_msg;
|
|
bool valid = grok_bslash_o(RExC_parse,
|
|
&value,
|
|
&numlen,
|
|
&error_msg,
|
|
SIZE_ONLY);
|
|
RExC_parse += numlen;
|
|
if (! valid) {
|
|
vFAIL(error_msg);
|
|
}
|
|
}
|
|
if (PL_encoding && value < 0x100) {
|
|
goto recode_encoding;
|
|
}
|
|
break;
|
|
case 'x':
|
|
if (*RExC_parse == '{') {
|
|
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
|
|
| PERL_SCAN_DISALLOW_PREFIX;
|
|
char * const e = strchr(RExC_parse++, '}');
|
|
if (!e)
|
|
vFAIL("Missing right brace on \\x{}");
|
|
|
|
numlen = e - RExC_parse;
|
|
value = grok_hex(RExC_parse, &numlen, &flags, NULL);
|
|
RExC_parse = e + 1;
|
|
}
|
|
else {
|
|
I32 flags = PERL_SCAN_DISALLOW_PREFIX;
|
|
numlen = 2;
|
|
value = grok_hex(RExC_parse, &numlen, &flags, NULL);
|
|
RExC_parse += numlen;
|
|
}
|
|
if (PL_encoding && value < 0x100)
|
|
goto recode_encoding;
|
|
break;
|
|
case 'c':
|
|
value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
|
|
break;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7':
|
|
{
|
|
/* Take 1-3 octal digits */
|
|
I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
|
|
numlen = 3;
|
|
value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
|
|
RExC_parse += numlen;
|
|
if (PL_encoding && value < 0x100)
|
|
goto recode_encoding;
|
|
break;
|
|
}
|
|
recode_encoding:
|
|
if (! RExC_override_recoding) {
|
|
SV* enc = PL_encoding;
|
|
value = reg_recode((const char)(U8)value, &enc);
|
|
if (!enc && SIZE_ONLY)
|
|
ckWARNreg(RExC_parse,
|
|
"Invalid escape in the specified encoding");
|
|
break;
|
|
}
|
|
default:
|
|
/* Allow \_ to not give an error */
|
|
if (!SIZE_ONLY && isALNUM(value) && value != '_') {
|
|
ckWARN2reg(RExC_parse,
|
|
"Unrecognized escape \\%c in character class passed through",
|
|
(int)value);
|
|
}
|
|
break;
|
|
}
|
|
} /* end of \blah */
|
|
#ifdef EBCDIC
|
|
else
|
|
literal_endpoint++;
|
|
#endif
|
|
|
|
if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
|
|
|
|
/* What matches in a locale is not known until runtime, so need to
|
|
* (one time per class) allocate extra space to pass to regexec.
|
|
* The space will contain a bit for each named class that is to be
|
|
* matched against. This isn't needed for \p{} and pseudo-classes,
|
|
* as they are not affected by locale, and hence are dealt with
|
|
* separately */
|
|
if (LOC && namedclass < ANYOF_MAX && ! need_class) {
|
|
need_class = 1;
|
|
if (SIZE_ONLY) {
|
|
RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
|
|
}
|
|
else {
|
|
RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
|
|
ANYOF_CLASS_ZERO(ret);
|
|
}
|
|
ANYOF_FLAGS(ret) |= ANYOF_CLASS;
|
|
}
|
|
|
|
/* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
|
|
* literal, as is the character that began the false range, i.e.
|
|
* the 'a' in the examples */
|
|
if (range) {
|
|
if (!SIZE_ONLY) {
|
|
const int w =
|
|
RExC_parse >= rangebegin ?
|
|
RExC_parse - rangebegin : 0;
|
|
ckWARN4reg(RExC_parse,
|
|
"False [] range \"%*.*s\"",
|
|
w, w, rangebegin);
|
|
|
|
stored +=
|
|
set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
|
|
if (prevvalue < 256) {
|
|
stored +=
|
|
set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
|
|
}
|
|
else {
|
|
nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
|
|
}
|
|
}
|
|
|
|
range = 0; /* this was not a true range */
|
|
}
|
|
|
|
if (!SIZE_ONLY) {
|
|
|
|
/* Possible truncation here but in some 64-bit environments
|
|
* the compiler gets heartburn about switch on 64-bit values.
|
|
* A similar issue a little earlier when switching on value.
|
|
* --jhi */
|
|
switch ((I32)namedclass) {
|
|
|
|
case ANYOF_ALNUMC: /* C's alnum, in contrast to \w */
|
|
DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
|
|
break;
|
|
case ANYOF_NALNUMC:
|
|
DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
|
|
break;
|
|
case ANYOF_ALPHA:
|
|
DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
|
|
break;
|
|
case ANYOF_NALPHA:
|
|
DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
|
|
break;
|
|
case ANYOF_ASCII:
|
|
if (LOC) {
|
|
ANYOF_CLASS_SET(ret, namedclass);
|
|
}
|
|
else {
|
|
_invlist_union(properties, PL_ASCII, &properties);
|
|
}
|
|
break;
|
|
case ANYOF_NASCII:
|
|
if (LOC) {
|
|
ANYOF_CLASS_SET(ret, namedclass);
|
|
}
|
|
else {
|
|
_invlist_union_complement_2nd(properties,
|
|
PL_ASCII, &properties);
|
|
if (DEPENDS_SEMANTICS) {
|
|
ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
|
|
}
|
|
}
|
|
break;
|
|
case ANYOF_BLANK:
|
|
DO_POSIX(ret, namedclass, properties,
|
|
PL_PosixBlank, PL_XPosixBlank);
|
|
break;
|
|
case ANYOF_NBLANK:
|
|
DO_N_POSIX(ret, namedclass, properties,
|
|
PL_PosixBlank, PL_XPosixBlank);
|
|
break;
|
|
case ANYOF_CNTRL:
|
|
DO_POSIX(ret, namedclass, properties,
|
|
PL_PosixCntrl, PL_XPosixCntrl);
|
|
break;
|
|
case ANYOF_NCNTRL:
|
|
DO_N_POSIX(ret, namedclass, properties,
|
|
PL_PosixCntrl, PL_XPosixCntrl);
|
|
break;
|
|
case ANYOF_DIGIT:
|
|
/* There are no digits in the Latin1 range outside of
|
|
* ASCII, so call the macro that doesn't have to resolve
|
|
* them */
|
|
DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(ret, namedclass, properties,
|
|
PL_PosixDigit, "XPosixDigit", listsv);
|
|
break;
|
|
case ANYOF_NDIGIT:
|
|
DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv);
|
|
break;
|
|
case ANYOF_GRAPH:
|
|
DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
|
|
break;
|
|
case ANYOF_NGRAPH:
|
|
DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
|
|
break;
|
|
case ANYOF_HORIZWS:
|
|
/* For these, we use the nonbitmap, as /d doesn't make a
|
|
* difference in what these match. There would be problems
|
|
* if these characters had folds other than themselves, as
|
|
* nonbitmap is subject to folding. It turns out that \h
|
|
* is just a synonym for XPosixBlank */
|
|
_invlist_union(nonbitmap, PL_XPosixBlank, &nonbitmap);
|
|
break;
|
|
case ANYOF_NHORIZWS:
|
|
_invlist_union_complement_2nd(nonbitmap,
|
|
PL_XPosixBlank, &nonbitmap);
|
|
break;
|
|
case ANYOF_LOWER:
|
|
case ANYOF_NLOWER:
|
|
{ /* These require special handling, as they differ under
|
|
folding, matching Cased there (which in the ASCII range
|
|
is the same as Alpha */
|
|
|
|
SV* ascii_source;
|
|
SV* l1_source;
|
|
const char *Xname;
|
|
|
|
if (FOLD && ! LOC) {
|
|
ascii_source = PL_PosixAlpha;
|
|
l1_source = PL_L1Cased;
|
|
Xname = "Cased";
|
|
}
|
|
else {
|
|
ascii_source = PL_PosixLower;
|
|
l1_source = PL_L1PosixLower;
|
|
Xname = "XPosixLower";
|
|
}
|
|
if (namedclass == ANYOF_LOWER) {
|
|
DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
ascii_source, l1_source, Xname, listsv);
|
|
}
|
|
else {
|
|
DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
|
|
properties, ascii_source, l1_source, Xname, listsv);
|
|
}
|
|
break;
|
|
}
|
|
case ANYOF_PRINT:
|
|
DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
|
|
break;
|
|
case ANYOF_NPRINT:
|
|
DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
|
|
break;
|
|
case ANYOF_PUNCT:
|
|
DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
|
|
break;
|
|
case ANYOF_NPUNCT:
|
|
DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
|
|
break;
|
|
case ANYOF_PSXSPC:
|
|
DO_POSIX(ret, namedclass, properties,
|
|
PL_PosixSpace, PL_XPosixSpace);
|
|
break;
|
|
case ANYOF_NPSXSPC:
|
|
DO_N_POSIX(ret, namedclass, properties,
|
|
PL_PosixSpace, PL_XPosixSpace);
|
|
break;
|
|
case ANYOF_SPACE:
|
|
DO_POSIX(ret, namedclass, properties,
|
|
PL_PerlSpace, PL_XPerlSpace);
|
|
break;
|
|
case ANYOF_NSPACE:
|
|
DO_N_POSIX(ret, namedclass, properties,
|
|
PL_PerlSpace, PL_XPerlSpace);
|
|
break;
|
|
case ANYOF_UPPER: /* Same as LOWER, above */
|
|
case ANYOF_NUPPER:
|
|
{
|
|
SV* ascii_source;
|
|
SV* l1_source;
|
|
const char *Xname;
|
|
|
|
if (FOLD && ! LOC) {
|
|
ascii_source = PL_PosixAlpha;
|
|
l1_source = PL_L1Cased;
|
|
Xname = "Cased";
|
|
}
|
|
else {
|
|
ascii_source = PL_PosixUpper;
|
|
l1_source = PL_L1PosixUpper;
|
|
Xname = "XPosixUpper";
|
|
}
|
|
if (namedclass == ANYOF_UPPER) {
|
|
DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
ascii_source, l1_source, Xname, listsv);
|
|
}
|
|
else {
|
|
DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
|
|
properties, ascii_source, l1_source, Xname, listsv);
|
|
}
|
|
break;
|
|
}
|
|
case ANYOF_ALNUM: /* Really is 'Word' */
|
|
DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
|
|
break;
|
|
case ANYOF_NALNUM:
|
|
DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
|
|
PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
|
|
break;
|
|
case ANYOF_VERTWS:
|
|
/* For these, we use the nonbitmap, as /d doesn't make a
|
|
* difference in what these match. There would be problems
|
|
* if these characters had folds other than themselves, as
|
|
* nonbitmap is subject to folding */
|
|
_invlist_union(nonbitmap, PL_VertSpace, &nonbitmap);
|
|
break;
|
|
case ANYOF_NVERTWS:
|
|
_invlist_union_complement_2nd(nonbitmap,
|
|
PL_VertSpace, &nonbitmap);
|
|
break;
|
|
case ANYOF_XDIGIT:
|
|
DO_POSIX(ret, namedclass, properties,
|
|
PL_PosixXDigit, PL_XPosixXDigit);
|
|
break;
|
|
case ANYOF_NXDIGIT:
|
|
DO_N_POSIX(ret, namedclass, properties,
|
|
PL_PosixXDigit, PL_XPosixXDigit);
|
|
break;
|
|
case ANYOF_MAX:
|
|
/* this is to handle \p and \P */
|
|
break;
|
|
default:
|
|
vFAIL("Invalid [::] class");
|
|
break;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
} /* end of namedclass \blah */
|
|
|
|
if (range) {
|
|
if (prevvalue > (IV)value) /* b-a */ {
|
|
const int w = RExC_parse - rangebegin;
|
|
Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
|
|
range = 0; /* not a valid range */
|
|
}
|
|
}
|
|
else {
|
|
prevvalue = value; /* save the beginning of the range */
|
|
if (RExC_parse+1 < RExC_end
|
|
&& *RExC_parse == '-'
|
|
&& RExC_parse[1] != ']')
|
|
{
|
|
RExC_parse++;
|
|
|
|
/* a bad range like \w-, [:word:]- ? */
|
|
if (namedclass > OOB_NAMEDCLASS) {
|
|
if (ckWARN(WARN_REGEXP)) {
|
|
const int w =
|
|
RExC_parse >= rangebegin ?
|
|
RExC_parse - rangebegin : 0;
|
|
vWARN4(RExC_parse,
|
|
"False [] range \"%*.*s\"",
|
|
w, w, rangebegin);
|
|
}
|
|
if (!SIZE_ONLY)
|
|
stored +=
|
|
set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
|
|
} else
|
|
range = 1; /* yeah, it's a range! */
|
|
continue; /* but do it the next time */
|
|
}
|
|
}
|
|
|
|
/* non-Latin1 code point implies unicode semantics. Must be set in
|
|
* pass1 so is there for the whole of pass 2 */
|
|
if (value > 255) {
|
|
RExC_uni_semantics = 1;
|
|
}
|
|
|
|
/* now is the next time */
|
|
if (!SIZE_ONLY) {
|
|
if (prevvalue < 256) {
|
|
const IV ceilvalue = value < 256 ? value : 255;
|
|
IV i;
|
|
#ifdef EBCDIC
|
|
/* In EBCDIC [\x89-\x91] should include
|
|
* the \x8e but [i-j] should not. */
|
|
if (literal_endpoint == 2 &&
|
|
((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
|
|
(isUPPER(prevvalue) && isUPPER(ceilvalue))))
|
|
{
|
|
if (isLOWER(prevvalue)) {
|
|
for (i = prevvalue; i <= ceilvalue; i++)
|
|
if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
|
|
stored +=
|
|
set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
|
|
}
|
|
} else {
|
|
for (i = prevvalue; i <= ceilvalue; i++)
|
|
if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
|
|
stored +=
|
|
set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
for (i = prevvalue; i <= ceilvalue; i++) {
|
|
stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
|
|
}
|
|
}
|
|
if (value > 255) {
|
|
const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
|
|
const UV natvalue = NATIVE_TO_UNI(value);
|
|
nonbitmap = _add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
|
|
}
|
|
#ifdef EBCDIC
|
|
literal_endpoint = 0;
|
|
#endif
|
|
}
|
|
|
|
range = 0; /* this range (if it was one) is done now */
|
|
}
|
|
|
|
|
|
|
|
if (SIZE_ONLY)
|
|
return ret;
|
|
/****** !SIZE_ONLY AFTER HERE *********/
|
|
|
|
/* If folding and there are code points above 255, we calculate all
|
|
* characters that could fold to or from the ones already on the list */
|
|
if (FOLD && nonbitmap) {
|
|
UV start, end; /* End points of code point ranges */
|
|
|
|
SV* fold_intersection = NULL;
|
|
|
|
/* This is a list of all the characters that participate in folds
|
|
* (except marks, etc in multi-char folds */
|
|
if (! PL_utf8_foldable) {
|
|
SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
|
|
PL_utf8_foldable = _swash_to_invlist(swash);
|
|
SvREFCNT_dec(swash);
|
|
}
|
|
|
|
/* This is a hash that for a particular fold gives all characters
|
|
* that are involved in it */
|
|
if (! PL_utf8_foldclosures) {
|
|
|
|
/* If we were unable to find any folds, then we likely won't be
|
|
* able to find the closures. So just create an empty list.
|
|
* Folding will effectively be restricted to the non-Unicode rules
|
|
* hard-coded into Perl. (This case happens legitimately during
|
|
* compilation of Perl itself before the Unicode tables are
|
|
* generated) */
|
|
if (invlist_len(PL_utf8_foldable) == 0) {
|
|
PL_utf8_foldclosures = newHV();
|
|
} else {
|
|
/* If the folds haven't been read in, call a fold function
|
|
* to force that */
|
|
if (! PL_utf8_tofold) {
|
|
U8 dummy[UTF8_MAXBYTES+1];
|
|
STRLEN dummy_len;
|
|
|
|
/* This particular string is above \xff in both UTF-8 and
|
|
* UTFEBCDIC */
|
|
to_utf8_fold((U8*) "\xC8\x80", dummy, &dummy_len);
|
|
assert(PL_utf8_tofold); /* Verify that worked */
|
|
}
|
|
PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
|
|
}
|
|
}
|
|
|
|
/* Only the characters in this class that participate in folds need be
|
|
* checked. Get the intersection of this class and all the possible
|
|
* characters that are foldable. This can quickly narrow down a large
|
|
* class */
|
|
_invlist_intersection(PL_utf8_foldable, nonbitmap, &fold_intersection);
|
|
|
|
/* Now look at the foldable characters in this class individually */
|
|
invlist_iterinit(fold_intersection);
|
|
while (invlist_iternext(fold_intersection, &start, &end)) {
|
|
UV j;
|
|
|
|
/* Look at every character in the range */
|
|
for (j = start; j <= end; j++) {
|
|
|
|
/* Get its fold */
|
|
U8 foldbuf[UTF8_MAXBYTES_CASE+1];
|
|
STRLEN foldlen;
|
|
const UV f =
|
|
_to_uni_fold_flags(j, foldbuf, &foldlen,
|
|
(allow_full_fold) ? FOLD_FLAGS_FULL : 0);
|
|
|
|
if (foldlen > (STRLEN)UNISKIP(f)) {
|
|
|
|
/* Any multicharacter foldings (disallowed in lookbehind
|
|
* patterns) require the following transform: [ABCDEF] ->
|
|
* (?:[ABCabcDEFd]|pq|rst) where E folds into "pq" and F
|
|
* folds into "rst", all other characters fold to single
|
|
* characters. We save away these multicharacter foldings,
|
|
* to be later saved as part of the additional "s" data. */
|
|
if (! RExC_in_lookbehind) {
|
|
U8* loc = foldbuf;
|
|
U8* e = foldbuf + foldlen;
|
|
|
|
/* If any of the folded characters of this are in the
|
|
* Latin1 range, tell the regex engine that this can
|
|
* match a non-utf8 target string. The only multi-byte
|
|
* fold whose source is in the Latin1 range (U+00DF)
|
|
* applies only when the target string is utf8, or
|
|
* under unicode rules */
|
|
if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
|
|
while (loc < e) {
|
|
|
|
/* Can't mix ascii with non- under /aa */
|
|
if (MORE_ASCII_RESTRICTED
|
|
&& (isASCII(*loc) != isASCII(j)))
|
|
{
|
|
goto end_multi_fold;
|
|
}
|
|
if (UTF8_IS_INVARIANT(*loc)
|
|
|| UTF8_IS_DOWNGRADEABLE_START(*loc))
|
|
{
|
|
/* Can't mix above and below 256 under LOC
|
|
*/
|
|
if (LOC) {
|
|
goto end_multi_fold;
|
|
}
|
|
ANYOF_FLAGS(ret)
|
|
|= ANYOF_NONBITMAP_NON_UTF8;
|
|
break;
|
|
}
|
|
loc += UTF8SKIP(loc);
|
|
}
|
|
}
|
|
|
|
add_alternate(&unicode_alternate, foldbuf, foldlen);
|
|
end_multi_fold: ;
|
|
}
|
|
|
|
/* This is special-cased, as it is the only letter which
|
|
* has both a multi-fold and single-fold in Latin1. All
|
|
* the other chars that have single and multi-folds are
|
|
* always in utf8, and the utf8 folding algorithm catches
|
|
* them */
|
|
if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
|
|
stored += set_regclass_bit(pRExC_state,
|
|
ret,
|
|
LATIN_SMALL_LETTER_SHARP_S,
|
|
&l1_fold_invlist, &unicode_alternate);
|
|
}
|
|
}
|
|
else {
|
|
/* Single character fold. Add everything in its fold
|
|
* closure to the list that this node should match */
|
|
SV** listp;
|
|
|
|
/* The fold closures data structure is a hash with the keys
|
|
* being every character that is folded to, like 'k', and
|
|
* the values each an array of everything that folds to its
|
|
* key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
|
|
if ((listp = hv_fetch(PL_utf8_foldclosures,
|
|
(char *) foldbuf, foldlen, FALSE)))
|
|
{
|
|
AV* list = (AV*) *listp;
|
|
IV k;
|
|
for (k = 0; k <= av_len(list); k++) {
|
|
SV** c_p = av_fetch(list, k, FALSE);
|
|
UV c;
|
|
if (c_p == NULL) {
|
|
Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
|
|
}
|
|
c = SvUV(*c_p);
|
|
|
|
/* /aa doesn't allow folds between ASCII and non-;
|
|
* /l doesn't allow them between above and below
|
|
* 256 */
|
|
if ((MORE_ASCII_RESTRICTED
|
|
&& (isASCII(c) != isASCII(j)))
|
|
|| (LOC && ((c < 256) != (j < 256))))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
|
|
stored += set_regclass_bit(pRExC_state,
|
|
ret,
|
|
(U8) c,
|
|
&l1_fold_invlist, &unicode_alternate);
|
|
}
|
|
/* It may be that the code point is already in
|
|
* this range or already in the bitmap, in
|
|
* which case we need do nothing */
|
|
else if ((c < start || c > end)
|
|
&& (c > 255
|
|
|| ! ANYOF_BITMAP_TEST(ret, c)))
|
|
{
|
|
nonbitmap = add_cp_to_invlist(nonbitmap, c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SvREFCNT_dec(fold_intersection);
|
|
}
|
|
|
|
/* Combine the two lists into one. */
|
|
if (l1_fold_invlist) {
|
|
if (nonbitmap) {
|
|
_invlist_union(nonbitmap, l1_fold_invlist, &nonbitmap);
|
|
SvREFCNT_dec(l1_fold_invlist);
|
|
}
|
|
else {
|
|
nonbitmap = l1_fold_invlist;
|
|
}
|
|
}
|
|
|
|
/* And combine the result (if any) with any inversion list from properties.
|
|
* The lists are kept separate up to now because we don't want to fold the
|
|
* properties */
|
|
if (properties) {
|
|
if (nonbitmap) {
|
|
_invlist_union(nonbitmap, properties, &nonbitmap);
|
|
SvREFCNT_dec(properties);
|
|
}
|
|
else {
|
|
nonbitmap = properties;
|
|
}
|
|
}
|
|
|
|
/* Here, <nonbitmap> contains all the code points we can determine at
|
|
* compile time that we haven't put into the bitmap. Go through it, and
|
|
* for things that belong in the bitmap, put them there, and delete from
|
|
* <nonbitmap> */
|
|
if (nonbitmap) {
|
|
|
|
/* Above-ASCII code points in /d have to stay in <nonbitmap>, as they
|
|
* possibly only should match when the target string is UTF-8 */
|
|
UV max_cp_to_set = (DEPENDS_SEMANTICS) ? 127 : 255;
|
|
|
|
/* This gets set if we actually need to modify things */
|
|
bool change_invlist = FALSE;
|
|
|
|
UV start, end;
|
|
|
|
/* Start looking through <nonbitmap> */
|
|
invlist_iterinit(nonbitmap);
|
|
while (invlist_iternext(nonbitmap, &start, &end)) {
|
|
UV high;
|
|
int i;
|
|
|
|
/* Quit if are above what we should change */
|
|
if (start > max_cp_to_set) {
|
|
break;
|
|
}
|
|
|
|
change_invlist = TRUE;
|
|
|
|
/* Set all the bits in the range, up to the max that we are doing */
|
|
high = (end < max_cp_to_set) ? end : max_cp_to_set;
|
|
for (i = start; i <= (int) high; i++) {
|
|
if (! ANYOF_BITMAP_TEST(ret, i)) {
|
|
ANYOF_BITMAP_SET(ret, i);
|
|
stored++;
|
|
prevvalue = value;
|
|
value = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Done with loop; remove any code points that are in the bitmap from
|
|
* <nonbitmap> */
|
|
if (change_invlist) {
|
|
_invlist_subtract(nonbitmap,
|
|
(DEPENDS_SEMANTICS)
|
|
? PL_ASCII
|
|
: PL_Latin1,
|
|
&nonbitmap);
|
|
}
|
|
|
|
/* If have completely emptied it, remove it completely */
|
|
if (invlist_len(nonbitmap) == 0) {
|
|
SvREFCNT_dec(nonbitmap);
|
|
nonbitmap = NULL;
|
|
}
|
|
}
|
|
|
|
/* Here, we have calculated what code points should be in the character
|
|
* class. <nonbitmap> does not overlap the bitmap except possibly in the
|
|
* case of DEPENDS rules.
|
|
*
|
|
* Now we can see about various optimizations. Fold calculation (which we
|
|
* did above) needs to take place before inversion. Otherwise /[^k]/i
|
|
* would invert to include K, which under /i would match k, which it
|
|
* shouldn't. */
|
|
|
|
/* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
|
|
* set the FOLD flag yet, so this does optimize those. It doesn't
|
|
* optimize locale. Doing so perhaps could be done as long as there is
|
|
* nothing like \w in it; some thought also would have to be given to the
|
|
* interaction with above 0x100 chars */
|
|
if ((ANYOF_FLAGS(ret) & ANYOF_INVERT)
|
|
&& ! LOC
|
|
&& ! unicode_alternate
|
|
/* In case of /d, there are some things that should match only when in
|
|
* not in the bitmap, i.e., they require UTF8 to match. These are
|
|
* listed in nonbitmap, but if ANYOF_NONBITMAP_NON_UTF8 is set in this
|
|
* case, they don't require UTF8, so can invert here */
|
|
&& (! nonbitmap
|
|
|| ! DEPENDS_SEMANTICS
|
|
|| (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
|
|
&& SvCUR(listsv) == initial_listsv_len)
|
|
{
|
|
int i;
|
|
if (! nonbitmap) {
|
|
for (i = 0; i < 256; ++i) {
|
|
if (ANYOF_BITMAP_TEST(ret, i)) {
|
|
ANYOF_BITMAP_CLEAR(ret, i);
|
|
}
|
|
else {
|
|
ANYOF_BITMAP_SET(ret, i);
|
|
prevvalue = value;
|
|
value = i;
|
|
}
|
|
}
|
|
/* The inversion means that everything above 255 is matched */
|
|
ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
|
|
}
|
|
else {
|
|
/* Here, also has things outside the bitmap that may overlap with
|
|
* the bitmap. We have to sync them up, so that they get inverted
|
|
* in both places. Earlier, we removed all overlaps except in the
|
|
* case of /d rules, so no syncing is needed except for this case
|
|
*/
|
|
SV *remove_list = NULL;
|
|
|
|
if (DEPENDS_SEMANTICS) {
|
|
UV start, end;
|
|
|
|
/* Set the bits that correspond to the ones that aren't in the
|
|
* bitmap. Otherwise, when we invert, we'll miss these.
|
|
* Earlier, we removed from the nonbitmap all code points
|
|
* < 128, so there is no extra work here */
|
|
invlist_iterinit(nonbitmap);
|
|
while (invlist_iternext(nonbitmap, &start, &end)) {
|
|
if (start > 255) { /* The bit map goes to 255 */
|
|
break;
|
|
}
|
|
if (end > 255) {
|
|
end = 255;
|
|
}
|
|
for (i = start; i <= (int) end; ++i) {
|
|
ANYOF_BITMAP_SET(ret, i);
|
|
prevvalue = value;
|
|
value = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now invert both the bitmap and the nonbitmap. Anything in the
|
|
* bitmap has to also be removed from the non-bitmap, but again,
|
|
* there should not be overlap unless is /d rules. */
|
|
_invlist_invert(nonbitmap);
|
|
|
|
/* Any swash can't be used as-is, because we've inverted things */
|
|
if (swash) {
|
|
SvREFCNT_dec(swash);
|
|
swash = NULL;
|
|
}
|
|
|
|
for (i = 0; i < 256; ++i) {
|
|
if (ANYOF_BITMAP_TEST(ret, i)) {
|
|
ANYOF_BITMAP_CLEAR(ret, i);
|
|
if (DEPENDS_SEMANTICS) {
|
|
if (! remove_list) {
|
|
remove_list = _new_invlist(2);
|
|
}
|
|
remove_list = add_cp_to_invlist(remove_list, i);
|
|
}
|
|
}
|
|
else {
|
|
ANYOF_BITMAP_SET(ret, i);
|
|
prevvalue = value;
|
|
value = i;
|
|
}
|
|
}
|
|
|
|
/* And do the removal */
|
|
if (DEPENDS_SEMANTICS) {
|
|
if (remove_list) {
|
|
_invlist_subtract(nonbitmap, remove_list, &nonbitmap);
|
|
SvREFCNT_dec(remove_list);
|
|
}
|
|
}
|
|
else {
|
|
/* There is no overlap for non-/d, so just delete anything
|
|
* below 256 */
|
|
_invlist_intersection(nonbitmap, PL_AboveLatin1, &nonbitmap);
|
|
}
|
|
}
|
|
|
|
stored = 256 - stored;
|
|
|
|
/* Clear the invert flag since have just done it here */
|
|
ANYOF_FLAGS(ret) &= ~ANYOF_INVERT;
|
|
}
|
|
|
|
/* Folding in the bitmap is taken care of above, but not for locale (for
|
|
* which we have to wait to see what folding is in effect at runtime), and
|
|
* for some things not in the bitmap (only the upper latin folds in this
|
|
* case, as all other single-char folding has been set above). Set
|
|
* run-time fold flag for these */
|
|
if (FOLD && (LOC
|
|
|| (DEPENDS_SEMANTICS
|
|
&& nonbitmap
|
|
&& ! (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
|
|
|| unicode_alternate))
|
|
{
|
|
ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
|
|
}
|
|
|
|
/* A single character class can be "optimized" into an EXACTish node.
|
|
* Note that since we don't currently count how many characters there are
|
|
* outside the bitmap, we are XXX missing optimization possibilities for
|
|
* them. This optimization can't happen unless this is a truly single
|
|
* character class, which means that it can't be an inversion into a
|
|
* many-character class, and there must be no possibility of there being
|
|
* things outside the bitmap. 'stored' (only) for locales doesn't include
|
|
* \w, etc, so have to make a special test that they aren't present
|
|
*
|
|
* Similarly A 2-character class of the very special form like [bB] can be
|
|
* optimized into an EXACTFish node, but only for non-locales, and for
|
|
* characters which only have the two folds; so things like 'fF' and 'Ii'
|
|
* wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
|
|
* FI'. */
|
|
if (! nonbitmap
|
|
&& ! unicode_alternate
|
|
&& SvCUR(listsv) == initial_listsv_len
|
|
&& ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
|
|
&& (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
|
|
|| (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
|
|
|| (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
|
|
&& (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
|
|
/* If the latest code point has a fold whose
|
|
* bit is set, it must be the only other one */
|
|
&& ((prevvalue = PL_fold_latin1[value]) != (IV)value)
|
|
&& ANYOF_BITMAP_TEST(ret, prevvalue)))))
|
|
{
|
|
/* Note that the information needed to decide to do this optimization
|
|
* is not currently available until the 2nd pass, and that the actually
|
|
* used EXACTish node takes less space than the calculated ANYOF node,
|
|
* and hence the amount of space calculated in the first pass is larger
|
|
* than actually used, so this optimization doesn't gain us any space.
|
|
* But an EXACT node is faster than an ANYOF node, and can be combined
|
|
* with any adjacent EXACT nodes later by the optimizer for further
|
|
* gains. The speed of executing an EXACTF is similar to an ANYOF
|
|
* node, so the optimization advantage comes from the ability to join
|
|
* it to adjacent EXACT nodes */
|
|
|
|
const char * cur_parse= RExC_parse;
|
|
U8 op;
|
|
RExC_emit = (regnode *)orig_emit;
|
|
RExC_parse = (char *)orig_parse;
|
|
|
|
if (stored == 1) {
|
|
|
|
/* A locale node with one point can be folded; all the other cases
|
|
* with folding will have two points, since we calculate them above
|
|
*/
|
|
if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
|
|
op = EXACTFL;
|
|
}
|
|
else {
|
|
op = EXACT;
|
|
}
|
|
}
|
|
else { /* else 2 chars in the bit map: the folds of each other */
|
|
|
|
/* Use the folded value, which for the cases where we get here,
|
|
* is just the lower case of the current one (which may resolve to
|
|
* itself, or to the other one */
|
|
value = toLOWER_LATIN1(value);
|
|
|
|
/* To join adjacent nodes, they must be the exact EXACTish type.
|
|
* Try to use the most likely type, by using EXACTFA if possible,
|
|
* then EXACTFU if the regex calls for it, or is required because
|
|
* the character is non-ASCII. (If <value> is ASCII, its fold is
|
|
* also ASCII for the cases where we get here.) */
|
|
if (MORE_ASCII_RESTRICTED && isASCII(value)) {
|
|
op = EXACTFA;
|
|
}
|
|
else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
|
|
op = EXACTFU;
|
|
}
|
|
else { /* Otherwise, more likely to be EXACTF type */
|
|
op = EXACTF;
|
|
}
|
|
}
|
|
|
|
ret = reg_node(pRExC_state, op);
|
|
RExC_parse = (char *)cur_parse;
|
|
if (UTF && ! NATIVE_IS_INVARIANT(value)) {
|
|
*STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
|
|
*(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
|
|
STR_LEN(ret)= 2;
|
|
RExC_emit += STR_SZ(2);
|
|
}
|
|
else {
|
|
*STRING(ret)= (char)value;
|
|
STR_LEN(ret)= 1;
|
|
RExC_emit += STR_SZ(1);
|
|
}
|
|
SvREFCNT_dec(listsv);
|
|
return ret;
|
|
}
|
|
|
|
/* If there is a swash and more than one element, we can't use the swash in
|
|
* the optimization below. */
|
|
if (swash && element_count > 1) {
|
|
SvREFCNT_dec(swash);
|
|
swash = NULL;
|
|
}
|
|
if (! nonbitmap
|
|
&& SvCUR(listsv) == initial_listsv_len
|
|
&& ! unicode_alternate)
|
|
{
|
|
ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
|
|
SvREFCNT_dec(listsv);
|
|
SvREFCNT_dec(unicode_alternate);
|
|
}
|
|
else {
|
|
/* av[0] stores the character class description in its textual form:
|
|
* used later (regexec.c:Perl_regclass_swash()) to initialize the
|
|
* appropriate swash, and is also useful for dumping the regnode.
|
|
* av[1] if NULL, is a placeholder to later contain the swash computed
|
|
* from av[0]. But if no further computation need be done, the
|
|
* swash is stored there now.
|
|
* av[2] stores the multicharacter foldings, used later in
|
|
* regexec.c:S_reginclass().
|
|
* av[3] stores the nonbitmap inversion list for use in addition or
|
|
* instead of av[0]; not used if av[1] isn't NULL
|
|
* av[4] is set if any component of the class is from a user-defined
|
|
* property; not used if av[1] isn't NULL */
|
|
AV * const av = newAV();
|
|
SV *rv;
|
|
|
|
av_store(av, 0, (SvCUR(listsv) == initial_listsv_len)
|
|
? &PL_sv_undef
|
|
: listsv);
|
|
if (swash) {
|
|
av_store(av, 1, swash);
|
|
SvREFCNT_dec(nonbitmap);
|
|
}
|
|
else {
|
|
av_store(av, 1, NULL);
|
|
if (nonbitmap) {
|
|
av_store(av, 3, nonbitmap);
|
|
av_store(av, 4, newSVuv(has_user_defined_property));
|
|
}
|
|
}
|
|
|
|
/* Store any computed multi-char folds only if we are allowing
|
|
* them */
|
|
if (allow_full_fold) {
|
|
av_store(av, 2, MUTABLE_SV(unicode_alternate));
|
|
if (unicode_alternate) { /* This node is variable length */
|
|
OP(ret) = ANYOFV;
|
|
}
|
|
}
|
|
else {
|
|
av_store(av, 2, NULL);
|
|
}
|
|
rv = newRV_noinc(MUTABLE_SV(av));
|
|
n = add_data(pRExC_state, 1, "s");
|
|
RExC_rxi->data->data[n] = (void*)rv;
|
|
ARG_SET(ret, n);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* reg_skipcomment()
|
|
|
|
Absorbs an /x style # comments from the input stream.
|
|
Returns true if there is more text remaining in the stream.
|
|
Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
|
|
terminates the pattern without including a newline.
|
|
|
|
Note its the callers responsibility to ensure that we are
|
|
actually in /x mode
|
|
|
|
*/
|
|
|
|
STATIC bool
|
|
S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
|
|
{
|
|
bool ended = 0;
|
|
|
|
PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
|
|
|
|
while (RExC_parse < RExC_end)
|
|
if (*RExC_parse++ == '\n') {
|
|
ended = 1;
|
|
break;
|
|
}
|
|
if (!ended) {
|
|
/* we ran off the end of the pattern without ending
|
|
the comment, so we have to add an \n when wrapping */
|
|
RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
|
|
return 0;
|
|
} else
|
|
return 1;
|
|
}
|
|
|
|
/* nextchar()
|
|
|
|
Advances the parse position, and optionally absorbs
|
|
"whitespace" from the inputstream.
|
|
|
|
Without /x "whitespace" means (?#...) style comments only,
|
|
with /x this means (?#...) and # comments and whitespace proper.
|
|
|
|
Returns the RExC_parse point from BEFORE the scan occurs.
|
|
|
|
This is the /x friendly way of saying RExC_parse++.
|
|
*/
|
|
|
|
STATIC char*
|
|
S_nextchar(pTHX_ RExC_state_t *pRExC_state)
|
|
{
|
|
char* const retval = RExC_parse++;
|
|
|
|
PERL_ARGS_ASSERT_NEXTCHAR;
|
|
|
|
for (;;) {
|
|
if (RExC_end - RExC_parse >= 3
|
|
&& *RExC_parse == '('
|
|
&& RExC_parse[1] == '?'
|
|
&& RExC_parse[2] == '#')
|
|
{
|
|
while (*RExC_parse != ')') {
|
|
if (RExC_parse == RExC_end)
|
|
FAIL("Sequence (?#... not terminated");
|
|
RExC_parse++;
|
|
}
|
|
RExC_parse++;
|
|
continue;
|
|
}
|
|
if (RExC_flags & RXf_PMf_EXTENDED) {
|
|
if (isSPACE(*RExC_parse)) {
|
|
RExC_parse++;
|
|
continue;
|
|
}
|
|
else if (*RExC_parse == '#') {
|
|
if ( reg_skipcomment( pRExC_state ) )
|
|
continue;
|
|
}
|
|
}
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
/*
|
|
- reg_node - emit a node
|
|
*/
|
|
STATIC regnode * /* Location. */
|
|
S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
|
|
{
|
|
dVAR;
|
|
register regnode *ptr;
|
|
regnode * const ret = RExC_emit;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REG_NODE;
|
|
|
|
if (SIZE_ONLY) {
|
|
SIZE_ALIGN(RExC_size);
|
|
RExC_size += 1;
|
|
return(ret);
|
|
}
|
|
if (RExC_emit >= RExC_emit_bound)
|
|
Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
|
|
op, RExC_emit, RExC_emit_bound);
|
|
|
|
NODE_ALIGN_FILL(ret);
|
|
ptr = ret;
|
|
FILL_ADVANCE_NODE(ptr, op);
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
if (RExC_offsets) { /* MJD */
|
|
MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
|
|
"reg_node", __LINE__,
|
|
PL_reg_name[op],
|
|
(UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
|
|
? "Overwriting end of array!\n" : "OK",
|
|
(UV)(RExC_emit - RExC_emit_start),
|
|
(UV)(RExC_parse - RExC_start),
|
|
(UV)RExC_offsets[0]));
|
|
Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
|
|
}
|
|
#endif
|
|
RExC_emit = ptr;
|
|
return(ret);
|
|
}
|
|
|
|
/*
|
|
- reganode - emit a node with an argument
|
|
*/
|
|
STATIC regnode * /* Location. */
|
|
S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
|
|
{
|
|
dVAR;
|
|
register regnode *ptr;
|
|
regnode * const ret = RExC_emit;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGANODE;
|
|
|
|
if (SIZE_ONLY) {
|
|
SIZE_ALIGN(RExC_size);
|
|
RExC_size += 2;
|
|
/*
|
|
We can't do this:
|
|
|
|
assert(2==regarglen[op]+1);
|
|
|
|
Anything larger than this has to allocate the extra amount.
|
|
If we changed this to be:
|
|
|
|
RExC_size += (1 + regarglen[op]);
|
|
|
|
then it wouldn't matter. Its not clear what side effect
|
|
might come from that so its not done so far.
|
|
-- dmq
|
|
*/
|
|
return(ret);
|
|
}
|
|
if (RExC_emit >= RExC_emit_bound)
|
|
Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
|
|
op, RExC_emit, RExC_emit_bound);
|
|
|
|
NODE_ALIGN_FILL(ret);
|
|
ptr = ret;
|
|
FILL_ADVANCE_NODE_ARG(ptr, op, arg);
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
if (RExC_offsets) { /* MJD */
|
|
MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
|
|
"reganode",
|
|
__LINE__,
|
|
PL_reg_name[op],
|
|
(UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
|
|
"Overwriting end of array!\n" : "OK",
|
|
(UV)(RExC_emit - RExC_emit_start),
|
|
(UV)(RExC_parse - RExC_start),
|
|
(UV)RExC_offsets[0]));
|
|
Set_Cur_Node_Offset;
|
|
}
|
|
#endif
|
|
RExC_emit = ptr;
|
|
return(ret);
|
|
}
|
|
|
|
/*
|
|
- reguni - emit (if appropriate) a Unicode character
|
|
*/
|
|
STATIC STRLEN
|
|
S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
|
|
{
|
|
dVAR;
|
|
|
|
PERL_ARGS_ASSERT_REGUNI;
|
|
|
|
return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
|
|
}
|
|
|
|
/*
|
|
- reginsert - insert an operator in front of already-emitted operand
|
|
*
|
|
* Means relocating the operand.
|
|
*/
|
|
STATIC void
|
|
S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
|
|
{
|
|
dVAR;
|
|
register regnode *src;
|
|
register regnode *dst;
|
|
register regnode *place;
|
|
const int offset = regarglen[(U8)op];
|
|
const int size = NODE_STEP_REGNODE + offset;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGINSERT;
|
|
PERL_UNUSED_ARG(depth);
|
|
/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
|
|
DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
|
|
if (SIZE_ONLY) {
|
|
RExC_size += size;
|
|
return;
|
|
}
|
|
|
|
src = RExC_emit;
|
|
RExC_emit += size;
|
|
dst = RExC_emit;
|
|
if (RExC_open_parens) {
|
|
int paren;
|
|
/*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
|
|
for ( paren=0 ; paren < RExC_npar ; paren++ ) {
|
|
if ( RExC_open_parens[paren] >= opnd ) {
|
|
/*DEBUG_PARSE_FMT("open"," - %d",size);*/
|
|
RExC_open_parens[paren] += size;
|
|
} else {
|
|
/*DEBUG_PARSE_FMT("open"," - %s","ok");*/
|
|
}
|
|
if ( RExC_close_parens[paren] >= opnd ) {
|
|
/*DEBUG_PARSE_FMT("close"," - %d",size);*/
|
|
RExC_close_parens[paren] += size;
|
|
} else {
|
|
/*DEBUG_PARSE_FMT("close"," - %s","ok");*/
|
|
}
|
|
}
|
|
}
|
|
|
|
while (src > opnd) {
|
|
StructCopy(--src, --dst, regnode);
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
if (RExC_offsets) { /* MJD 20010112 */
|
|
MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
|
|
"reg_insert",
|
|
__LINE__,
|
|
PL_reg_name[op],
|
|
(UV)(dst - RExC_emit_start) > RExC_offsets[0]
|
|
? "Overwriting end of array!\n" : "OK",
|
|
(UV)(src - RExC_emit_start),
|
|
(UV)(dst - RExC_emit_start),
|
|
(UV)RExC_offsets[0]));
|
|
Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
|
|
Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
place = opnd; /* Op node, where operand used to be. */
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
if (RExC_offsets) { /* MJD */
|
|
MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
|
|
"reginsert",
|
|
__LINE__,
|
|
PL_reg_name[op],
|
|
(UV)(place - RExC_emit_start) > RExC_offsets[0]
|
|
? "Overwriting end of array!\n" : "OK",
|
|
(UV)(place - RExC_emit_start),
|
|
(UV)(RExC_parse - RExC_start),
|
|
(UV)RExC_offsets[0]));
|
|
Set_Node_Offset(place, RExC_parse);
|
|
Set_Node_Length(place, 1);
|
|
}
|
|
#endif
|
|
src = NEXTOPER(place);
|
|
FILL_ADVANCE_NODE(place, op);
|
|
Zero(src, offset, regnode);
|
|
}
|
|
|
|
/*
|
|
- regtail - set the next-pointer at the end of a node chain of p to val.
|
|
- SEE ALSO: regtail_study
|
|
*/
|
|
/* TODO: All three parms should be const */
|
|
STATIC void
|
|
S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
|
|
{
|
|
dVAR;
|
|
register regnode *scan;
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGTAIL;
|
|
#ifndef DEBUGGING
|
|
PERL_UNUSED_ARG(depth);
|
|
#endif
|
|
|
|
if (SIZE_ONLY)
|
|
return;
|
|
|
|
/* Find last node. */
|
|
scan = p;
|
|
for (;;) {
|
|
regnode * const temp = regnext(scan);
|
|
DEBUG_PARSE_r({
|
|
SV * const mysv=sv_newmortal();
|
|
DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
|
|
regprop(RExC_rx, mysv, scan);
|
|
PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
|
|
SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
|
|
(temp == NULL ? "->" : ""),
|
|
(temp == NULL ? PL_reg_name[OP(val)] : "")
|
|
);
|
|
});
|
|
if (temp == NULL)
|
|
break;
|
|
scan = temp;
|
|
}
|
|
|
|
if (reg_off_by_arg[OP(scan)]) {
|
|
ARG_SET(scan, val - scan);
|
|
}
|
|
else {
|
|
NEXT_OFF(scan) = val - scan;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUGGING
|
|
/*
|
|
- regtail_study - set the next-pointer at the end of a node chain of p to val.
|
|
- Look for optimizable sequences at the same time.
|
|
- currently only looks for EXACT chains.
|
|
|
|
This is experimental code. The idea is to use this routine to perform
|
|
in place optimizations on branches and groups as they are constructed,
|
|
with the long term intention of removing optimization from study_chunk so
|
|
that it is purely analytical.
|
|
|
|
Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
|
|
to control which is which.
|
|
|
|
*/
|
|
/* TODO: All four parms should be const */
|
|
|
|
STATIC U8
|
|
S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
|
|
{
|
|
dVAR;
|
|
register regnode *scan;
|
|
U8 exact = PSEUDO;
|
|
#ifdef EXPERIMENTAL_INPLACESCAN
|
|
I32 min = 0;
|
|
#endif
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGTAIL_STUDY;
|
|
|
|
|
|
if (SIZE_ONLY)
|
|
return exact;
|
|
|
|
/* Find last node. */
|
|
|
|
scan = p;
|
|
for (;;) {
|
|
regnode * const temp = regnext(scan);
|
|
#ifdef EXPERIMENTAL_INPLACESCAN
|
|
if (PL_regkind[OP(scan)] == EXACT) {
|
|
bool has_exactf_sharp_s; /* Unexamined in this routine */
|
|
if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
|
|
return EXACT;
|
|
}
|
|
#endif
|
|
if ( exact ) {
|
|
switch (OP(scan)) {
|
|
case EXACT:
|
|
case EXACTF:
|
|
case EXACTFA:
|
|
case EXACTFU:
|
|
case EXACTFU_SS:
|
|
case EXACTFU_TRICKYFOLD:
|
|
case EXACTFL:
|
|
if( exact == PSEUDO )
|
|
exact= OP(scan);
|
|
else if ( exact != OP(scan) )
|
|
exact= 0;
|
|
case NOTHING:
|
|
break;
|
|
default:
|
|
exact= 0;
|
|
}
|
|
}
|
|
DEBUG_PARSE_r({
|
|
SV * const mysv=sv_newmortal();
|
|
DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
|
|
regprop(RExC_rx, mysv, scan);
|
|
PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
|
|
SvPV_nolen_const(mysv),
|
|
REG_NODE_NUM(scan),
|
|
PL_reg_name[exact]);
|
|
});
|
|
if (temp == NULL)
|
|
break;
|
|
scan = temp;
|
|
}
|
|
DEBUG_PARSE_r({
|
|
SV * const mysv_val=sv_newmortal();
|
|
DEBUG_PARSE_MSG("");
|
|
regprop(RExC_rx, mysv_val, val);
|
|
PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
|
|
SvPV_nolen_const(mysv_val),
|
|
(IV)REG_NODE_NUM(val),
|
|
(IV)(val - scan)
|
|
);
|
|
});
|
|
if (reg_off_by_arg[OP(scan)]) {
|
|
ARG_SET(scan, val - scan);
|
|
}
|
|
else {
|
|
NEXT_OFF(scan) = val - scan;
|
|
}
|
|
|
|
return exact;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
- regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
|
|
*/
|
|
#ifdef DEBUGGING
|
|
static void
|
|
S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
|
|
{
|
|
int bit;
|
|
int set=0;
|
|
regex_charset cs;
|
|
|
|
for (bit=0; bit<32; bit++) {
|
|
if (flags & (1<<bit)) {
|
|
if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
|
|
continue;
|
|
}
|
|
if (!set++ && lead)
|
|
PerlIO_printf(Perl_debug_log, "%s",lead);
|
|
PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
|
|
}
|
|
}
|
|
if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
|
|
if (!set++ && lead) {
|
|
PerlIO_printf(Perl_debug_log, "%s",lead);
|
|
}
|
|
switch (cs) {
|
|
case REGEX_UNICODE_CHARSET:
|
|
PerlIO_printf(Perl_debug_log, "UNICODE");
|
|
break;
|
|
case REGEX_LOCALE_CHARSET:
|
|
PerlIO_printf(Perl_debug_log, "LOCALE");
|
|
break;
|
|
case REGEX_ASCII_RESTRICTED_CHARSET:
|
|
PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
|
|
break;
|
|
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
|
|
PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
|
|
break;
|
|
default:
|
|
PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
|
|
break;
|
|
}
|
|
}
|
|
if (lead) {
|
|
if (set)
|
|
PerlIO_printf(Perl_debug_log, "\n");
|
|
else
|
|
PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void
|
|
Perl_regdump(pTHX_ const regexp *r)
|
|
{
|
|
#ifdef DEBUGGING
|
|
dVAR;
|
|
SV * const sv = sv_newmortal();
|
|
SV *dsv= sv_newmortal();
|
|
RXi_GET_DECL(r,ri);
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGDUMP;
|
|
|
|
(void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
|
|
|
|
/* Header fields of interest. */
|
|
if (r->anchored_substr) {
|
|
RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
|
|
RE_SV_DUMPLEN(r->anchored_substr), 30);
|
|
PerlIO_printf(Perl_debug_log,
|
|
"anchored %s%s at %"IVdf" ",
|
|
s, RE_SV_TAIL(r->anchored_substr),
|
|
(IV)r->anchored_offset);
|
|
} else if (r->anchored_utf8) {
|
|
RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
|
|
RE_SV_DUMPLEN(r->anchored_utf8), 30);
|
|
PerlIO_printf(Perl_debug_log,
|
|
"anchored utf8 %s%s at %"IVdf" ",
|
|
s, RE_SV_TAIL(r->anchored_utf8),
|
|
(IV)r->anchored_offset);
|
|
}
|
|
if (r->float_substr) {
|
|
RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
|
|
RE_SV_DUMPLEN(r->float_substr), 30);
|
|
PerlIO_printf(Perl_debug_log,
|
|
"floating %s%s at %"IVdf"..%"UVuf" ",
|
|
s, RE_SV_TAIL(r->float_substr),
|
|
(IV)r->float_min_offset, (UV)r->float_max_offset);
|
|
} else if (r->float_utf8) {
|
|
RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
|
|
RE_SV_DUMPLEN(r->float_utf8), 30);
|
|
PerlIO_printf(Perl_debug_log,
|
|
"floating utf8 %s%s at %"IVdf"..%"UVuf" ",
|
|
s, RE_SV_TAIL(r->float_utf8),
|
|
(IV)r->float_min_offset, (UV)r->float_max_offset);
|
|
}
|
|
if (r->check_substr || r->check_utf8)
|
|
PerlIO_printf(Perl_debug_log,
|
|
(const char *)
|
|
(r->check_substr == r->float_substr
|
|
&& r->check_utf8 == r->float_utf8
|
|
? "(checking floating" : "(checking anchored"));
|
|
if (r->extflags & RXf_NOSCAN)
|
|
PerlIO_printf(Perl_debug_log, " noscan");
|
|
if (r->extflags & RXf_CHECK_ALL)
|
|
PerlIO_printf(Perl_debug_log, " isall");
|
|
if (r->check_substr || r->check_utf8)
|
|
PerlIO_printf(Perl_debug_log, ") ");
|
|
|
|
if (ri->regstclass) {
|
|
regprop(r, sv, ri->regstclass);
|
|
PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
|
|
}
|
|
if (r->extflags & RXf_ANCH) {
|
|
PerlIO_printf(Perl_debug_log, "anchored");
|
|
if (r->extflags & RXf_ANCH_BOL)
|
|
PerlIO_printf(Perl_debug_log, "(BOL)");
|
|
if (r->extflags & RXf_ANCH_MBOL)
|
|
PerlIO_printf(Perl_debug_log, "(MBOL)");
|
|
if (r->extflags & RXf_ANCH_SBOL)
|
|
PerlIO_printf(Perl_debug_log, "(SBOL)");
|
|
if (r->extflags & RXf_ANCH_GPOS)
|
|
PerlIO_printf(Perl_debug_log, "(GPOS)");
|
|
PerlIO_putc(Perl_debug_log, ' ');
|
|
}
|
|
if (r->extflags & RXf_GPOS_SEEN)
|
|
PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
|
|
if (r->intflags & PREGf_SKIP)
|
|
PerlIO_printf(Perl_debug_log, "plus ");
|
|
if (r->intflags & PREGf_IMPLICIT)
|
|
PerlIO_printf(Perl_debug_log, "implicit ");
|
|
PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
|
|
if (r->extflags & RXf_EVAL_SEEN)
|
|
PerlIO_printf(Perl_debug_log, "with eval ");
|
|
PerlIO_printf(Perl_debug_log, "\n");
|
|
DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
|
|
#else
|
|
PERL_ARGS_ASSERT_REGDUMP;
|
|
PERL_UNUSED_CONTEXT;
|
|
PERL_UNUSED_ARG(r);
|
|
#endif /* DEBUGGING */
|
|
}
|
|
|
|
/*
|
|
- regprop - printable representation of opcode
|
|
*/
|
|
#define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
|
|
STMT_START { \
|
|
if (do_sep) { \
|
|
Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
|
|
if (flags & ANYOF_INVERT) \
|
|
/*make sure the invert info is in each */ \
|
|
sv_catpvs(sv, "^"); \
|
|
do_sep = 0; \
|
|
} \
|
|
} STMT_END
|
|
|
|
void
|
|
Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
|
|
{
|
|
#ifdef DEBUGGING
|
|
dVAR;
|
|
register int k;
|
|
RXi_GET_DECL(prog,progi);
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGPROP;
|
|
|
|
sv_setpvs(sv, "");
|
|
|
|
if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
|
|
/* It would be nice to FAIL() here, but this may be called from
|
|
regexec.c, and it would be hard to supply pRExC_state. */
|
|
Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
|
|
sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
|
|
|
|
k = PL_regkind[OP(o)];
|
|
|
|
if (k == EXACT) {
|
|
sv_catpvs(sv, " ");
|
|
/* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
|
|
* is a crude hack but it may be the best for now since
|
|
* we have no flag "this EXACTish node was UTF-8"
|
|
* --jhi */
|
|
pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
|
|
PERL_PV_ESCAPE_UNI_DETECT |
|
|
PERL_PV_ESCAPE_NONASCII |
|
|
PERL_PV_PRETTY_ELLIPSES |
|
|
PERL_PV_PRETTY_LTGT |
|
|
PERL_PV_PRETTY_NOCLEAR
|
|
);
|
|
} else if (k == TRIE) {
|
|
/* print the details of the trie in dumpuntil instead, as
|
|
* progi->data isn't available here */
|
|
const char op = OP(o);
|
|
const U32 n = ARG(o);
|
|
const reg_ac_data * const ac = IS_TRIE_AC(op) ?
|
|
(reg_ac_data *)progi->data->data[n] :
|
|
NULL;
|
|
const reg_trie_data * const trie
|
|
= (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
|
|
|
|
Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
|
|
DEBUG_TRIE_COMPILE_r(
|
|
Perl_sv_catpvf(aTHX_ sv,
|
|
"<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
|
|
(UV)trie->startstate,
|
|
(IV)trie->statecount-1, /* -1 because of the unused 0 element */
|
|
(UV)trie->wordcount,
|
|
(UV)trie->minlen,
|
|
(UV)trie->maxlen,
|
|
(UV)TRIE_CHARCOUNT(trie),
|
|
(UV)trie->uniquecharcount
|
|
)
|
|
);
|
|
if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
|
|
int i;
|
|
int rangestart = -1;
|
|
U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
|
|
sv_catpvs(sv, "[");
|
|
for (i = 0; i <= 256; i++) {
|
|
if (i < 256 && BITMAP_TEST(bitmap,i)) {
|
|
if (rangestart == -1)
|
|
rangestart = i;
|
|
} else if (rangestart != -1) {
|
|
if (i <= rangestart + 3)
|
|
for (; rangestart < i; rangestart++)
|
|
put_byte(sv, rangestart);
|
|
else {
|
|
put_byte(sv, rangestart);
|
|
sv_catpvs(sv, "-");
|
|
put_byte(sv, i - 1);
|
|
}
|
|
rangestart = -1;
|
|
}
|
|
}
|
|
sv_catpvs(sv, "]");
|
|
}
|
|
|
|
} else if (k == CURLY) {
|
|
if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
|
|
Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
|
|
Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
|
|
}
|
|
else if (k == WHILEM && o->flags) /* Ordinal/of */
|
|
Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
|
|
else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
|
|
Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
|
|
if ( RXp_PAREN_NAMES(prog) ) {
|
|
if ( k != REF || (OP(o) < NREF)) {
|
|
AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
|
|
SV **name= av_fetch(list, ARG(o), 0 );
|
|
if (name)
|
|
Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
|
|
}
|
|
else {
|
|
AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
|
|
SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
|
|
I32 *nums=(I32*)SvPVX(sv_dat);
|
|
SV **name= av_fetch(list, nums[0], 0 );
|
|
I32 n;
|
|
if (name) {
|
|
for ( n=0; n<SvIVX(sv_dat); n++ ) {
|
|
Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
|
|
(n ? "," : ""), (IV)nums[n]);
|
|
}
|
|
Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
|
|
}
|
|
}
|
|
}
|
|
} else if (k == GOSUB)
|
|
Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
|
|
else if (k == VERB) {
|
|
if (!o->flags)
|
|
Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
|
|
SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
|
|
} else if (k == LOGICAL)
|
|
Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
|
|
else if (k == ANYOF) {
|
|
int i, rangestart = -1;
|
|
const U8 flags = ANYOF_FLAGS(o);
|
|
int do_sep = 0;
|
|
|
|
/* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
|
|
static const char * const anyofs[] = {
|
|
"\\w",
|
|
"\\W",
|
|
"\\s",
|
|
"\\S",
|
|
"\\d",
|
|
"\\D",
|
|
"[:alnum:]",
|
|
"[:^alnum:]",
|
|
"[:alpha:]",
|
|
"[:^alpha:]",
|
|
"[:ascii:]",
|
|
"[:^ascii:]",
|
|
"[:cntrl:]",
|
|
"[:^cntrl:]",
|
|
"[:graph:]",
|
|
"[:^graph:]",
|
|
"[:lower:]",
|
|
"[:^lower:]",
|
|
"[:print:]",
|
|
"[:^print:]",
|
|
"[:punct:]",
|
|
"[:^punct:]",
|
|
"[:upper:]",
|
|
"[:^upper:]",
|
|
"[:xdigit:]",
|
|
"[:^xdigit:]",
|
|
"[:space:]",
|
|
"[:^space:]",
|
|
"[:blank:]",
|
|
"[:^blank:]"
|
|
};
|
|
|
|
if (flags & ANYOF_LOCALE)
|
|
sv_catpvs(sv, "{loc}");
|
|
if (flags & ANYOF_LOC_NONBITMAP_FOLD)
|
|
sv_catpvs(sv, "{i}");
|
|
Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
|
|
if (flags & ANYOF_INVERT)
|
|
sv_catpvs(sv, "^");
|
|
|
|
/* output what the standard cp 0-255 bitmap matches */
|
|
for (i = 0; i <= 256; i++) {
|
|
if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
|
|
if (rangestart == -1)
|
|
rangestart = i;
|
|
} else if (rangestart != -1) {
|
|
if (i <= rangestart + 3)
|
|
for (; rangestart < i; rangestart++)
|
|
put_byte(sv, rangestart);
|
|
else {
|
|
put_byte(sv, rangestart);
|
|
sv_catpvs(sv, "-");
|
|
put_byte(sv, i - 1);
|
|
}
|
|
do_sep = 1;
|
|
rangestart = -1;
|
|
}
|
|
}
|
|
|
|
EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
|
|
/* output any special charclass tests (used entirely under use locale) */
|
|
if (ANYOF_CLASS_TEST_ANY_SET(o))
|
|
for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
|
|
if (ANYOF_CLASS_TEST(o,i)) {
|
|
sv_catpv(sv, anyofs[i]);
|
|
do_sep = 1;
|
|
}
|
|
|
|
EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
|
|
|
|
if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
|
|
sv_catpvs(sv, "{non-utf8-latin1-all}");
|
|
}
|
|
|
|
/* output information about the unicode matching */
|
|
if (flags & ANYOF_UNICODE_ALL)
|
|
sv_catpvs(sv, "{unicode_all}");
|
|
else if (ANYOF_NONBITMAP(o))
|
|
sv_catpvs(sv, "{unicode}");
|
|
if (flags & ANYOF_NONBITMAP_NON_UTF8)
|
|
sv_catpvs(sv, "{outside bitmap}");
|
|
|
|
if (ANYOF_NONBITMAP(o)) {
|
|
SV *lv; /* Set if there is something outside the bit map */
|
|
SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
|
|
bool byte_output = FALSE; /* If something in the bitmap has been
|
|
output */
|
|
|
|
if (lv && lv != &PL_sv_undef) {
|
|
if (sw) {
|
|
U8 s[UTF8_MAXBYTES_CASE+1];
|
|
|
|
for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
|
|
uvchr_to_utf8(s, i);
|
|
|
|
if (i < 256
|
|
&& ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
|
|
things already
|
|
output as part
|
|
of the bitmap */
|
|
&& swash_fetch(sw, s, TRUE))
|
|
{
|
|
if (rangestart == -1)
|
|
rangestart = i;
|
|
} else if (rangestart != -1) {
|
|
byte_output = TRUE;
|
|
if (i <= rangestart + 3)
|
|
for (; rangestart < i; rangestart++) {
|
|
put_byte(sv, rangestart);
|
|
}
|
|
else {
|
|
put_byte(sv, rangestart);
|
|
sv_catpvs(sv, "-");
|
|
put_byte(sv, i-1);
|
|
}
|
|
rangestart = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
char *s = savesvpv(lv);
|
|
char * const origs = s;
|
|
|
|
while (*s && *s != '\n')
|
|
s++;
|
|
|
|
if (*s == '\n') {
|
|
const char * const t = ++s;
|
|
|
|
if (byte_output) {
|
|
sv_catpvs(sv, " ");
|
|
}
|
|
|
|
while (*s) {
|
|
if (*s == '\n') {
|
|
|
|
/* Truncate very long output */
|
|
if (s - origs > 256) {
|
|
Perl_sv_catpvf(aTHX_ sv,
|
|
"%.*s...",
|
|
(int) (s - origs - 1),
|
|
t);
|
|
goto out_dump;
|
|
}
|
|
*s = ' ';
|
|
}
|
|
else if (*s == '\t') {
|
|
*s = '-';
|
|
}
|
|
s++;
|
|
}
|
|
if (s[-1] == ' ')
|
|
s[-1] = 0;
|
|
|
|
sv_catpv(sv, t);
|
|
}
|
|
|
|
out_dump:
|
|
|
|
Safefree(origs);
|
|
}
|
|
SvREFCNT_dec(lv);
|
|
}
|
|
}
|
|
|
|
Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
|
|
}
|
|
else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
|
|
Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
|
|
#else
|
|
PERL_UNUSED_CONTEXT;
|
|
PERL_UNUSED_ARG(sv);
|
|
PERL_UNUSED_ARG(o);
|
|
PERL_UNUSED_ARG(prog);
|
|
#endif /* DEBUGGING */
|
|
}
|
|
|
|
SV *
|
|
Perl_re_intuit_string(pTHX_ REGEXP * const r)
|
|
{ /* Assume that RE_INTUIT is set */
|
|
dVAR;
|
|
struct regexp *const prog = (struct regexp *)SvANY(r);
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_RE_INTUIT_STRING;
|
|
PERL_UNUSED_CONTEXT;
|
|
|
|
DEBUG_COMPILE_r(
|
|
{
|
|
const char * const s = SvPV_nolen_const(prog->check_substr
|
|
? prog->check_substr : prog->check_utf8);
|
|
|
|
if (!PL_colorset) reginitcolors();
|
|
PerlIO_printf(Perl_debug_log,
|
|
"%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
|
|
PL_colors[4],
|
|
prog->check_substr ? "" : "utf8 ",
|
|
PL_colors[5],PL_colors[0],
|
|
s,
|
|
PL_colors[1],
|
|
(strlen(s) > 60 ? "..." : ""));
|
|
} );
|
|
|
|
return prog->check_substr ? prog->check_substr : prog->check_utf8;
|
|
}
|
|
|
|
/*
|
|
pregfree()
|
|
|
|
handles refcounting and freeing the perl core regexp structure. When
|
|
it is necessary to actually free the structure the first thing it
|
|
does is call the 'free' method of the regexp_engine associated to
|
|
the regexp, allowing the handling of the void *pprivate; member
|
|
first. (This routine is not overridable by extensions, which is why
|
|
the extensions free is called first.)
|
|
|
|
See regdupe and regdupe_internal if you change anything here.
|
|
*/
|
|
#ifndef PERL_IN_XSUB_RE
|
|
void
|
|
Perl_pregfree(pTHX_ REGEXP *r)
|
|
{
|
|
SvREFCNT_dec(r);
|
|
}
|
|
|
|
void
|
|
Perl_pregfree2(pTHX_ REGEXP *rx)
|
|
{
|
|
dVAR;
|
|
struct regexp *const r = (struct regexp *)SvANY(rx);
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_PREGFREE2;
|
|
|
|
if (r->mother_re) {
|
|
ReREFCNT_dec(r->mother_re);
|
|
} else {
|
|
CALLREGFREE_PVT(rx); /* free the private data */
|
|
SvREFCNT_dec(RXp_PAREN_NAMES(r));
|
|
}
|
|
if (r->substrs) {
|
|
SvREFCNT_dec(r->anchored_substr);
|
|
SvREFCNT_dec(r->anchored_utf8);
|
|
SvREFCNT_dec(r->float_substr);
|
|
SvREFCNT_dec(r->float_utf8);
|
|
Safefree(r->substrs);
|
|
}
|
|
RX_MATCH_COPY_FREE(rx);
|
|
#ifdef PERL_OLD_COPY_ON_WRITE
|
|
SvREFCNT_dec(r->saved_copy);
|
|
#endif
|
|
Safefree(r->offs);
|
|
}
|
|
|
|
/* reg_temp_copy()
|
|
|
|
This is a hacky workaround to the structural issue of match results
|
|
being stored in the regexp structure which is in turn stored in
|
|
PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
|
|
could be PL_curpm in multiple contexts, and could require multiple
|
|
result sets being associated with the pattern simultaneously, such
|
|
as when doing a recursive match with (??{$qr})
|
|
|
|
The solution is to make a lightweight copy of the regexp structure
|
|
when a qr// is returned from the code executed by (??{$qr}) this
|
|
lightweight copy doesn't actually own any of its data except for
|
|
the starp/end and the actual regexp structure itself.
|
|
|
|
*/
|
|
|
|
|
|
REGEXP *
|
|
Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
|
|
{
|
|
struct regexp *ret;
|
|
struct regexp *const r = (struct regexp *)SvANY(rx);
|
|
register const I32 npar = r->nparens+1;
|
|
|
|
PERL_ARGS_ASSERT_REG_TEMP_COPY;
|
|
|
|
if (!ret_x)
|
|
ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
|
|
ret = (struct regexp *)SvANY(ret_x);
|
|
|
|
(void)ReREFCNT_inc(rx);
|
|
/* We can take advantage of the existing "copied buffer" mechanism in SVs
|
|
by pointing directly at the buffer, but flagging that the allocated
|
|
space in the copy is zero. As we've just done a struct copy, it's now
|
|
a case of zero-ing that, rather than copying the current length. */
|
|
SvPV_set(ret_x, RX_WRAPPED(rx));
|
|
SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
|
|
memcpy(&(ret->xpv_cur), &(r->xpv_cur),
|
|
sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
|
|
SvLEN_set(ret_x, 0);
|
|
SvSTASH_set(ret_x, NULL);
|
|
SvMAGIC_set(ret_x, NULL);
|
|
Newx(ret->offs, npar, regexp_paren_pair);
|
|
Copy(r->offs, ret->offs, npar, regexp_paren_pair);
|
|
if (r->substrs) {
|
|
Newx(ret->substrs, 1, struct reg_substr_data);
|
|
StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
|
|
|
|
SvREFCNT_inc_void(ret->anchored_substr);
|
|
SvREFCNT_inc_void(ret->anchored_utf8);
|
|
SvREFCNT_inc_void(ret->float_substr);
|
|
SvREFCNT_inc_void(ret->float_utf8);
|
|
|
|
/* check_substr and check_utf8, if non-NULL, point to either their
|
|
anchored or float namesakes, and don't hold a second reference. */
|
|
}
|
|
RX_MATCH_COPIED_off(ret_x);
|
|
#ifdef PERL_OLD_COPY_ON_WRITE
|
|
ret->saved_copy = NULL;
|
|
#endif
|
|
ret->mother_re = rx;
|
|
|
|
return ret_x;
|
|
}
|
|
#endif
|
|
|
|
/* regfree_internal()
|
|
|
|
Free the private data in a regexp. This is overloadable by
|
|
extensions. Perl takes care of the regexp structure in pregfree(),
|
|
this covers the *pprivate pointer which technically perl doesn't
|
|
know about, however of course we have to handle the
|
|
regexp_internal structure when no extension is in use.
|
|
|
|
Note this is called before freeing anything in the regexp
|
|
structure.
|
|
*/
|
|
|
|
void
|
|
Perl_regfree_internal(pTHX_ REGEXP * const rx)
|
|
{
|
|
dVAR;
|
|
struct regexp *const r = (struct regexp *)SvANY(rx);
|
|
RXi_GET_DECL(r,ri);
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_REGFREE_INTERNAL;
|
|
|
|
DEBUG_COMPILE_r({
|
|
if (!PL_colorset)
|
|
reginitcolors();
|
|
{
|
|
SV *dsv= sv_newmortal();
|
|
RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
|
|
dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
|
|
PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
|
|
PL_colors[4],PL_colors[5],s);
|
|
}
|
|
});
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
if (ri->u.offsets)
|
|
Safefree(ri->u.offsets); /* 20010421 MJD */
|
|
#endif
|
|
if (ri->data) {
|
|
int n = ri->data->count;
|
|
PAD* new_comppad = NULL;
|
|
PAD* old_comppad;
|
|
PADOFFSET refcnt;
|
|
|
|
while (--n >= 0) {
|
|
/* If you add a ->what type here, update the comment in regcomp.h */
|
|
switch (ri->data->what[n]) {
|
|
case 'a':
|
|
case 's':
|
|
case 'S':
|
|
case 'u':
|
|
SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
|
|
break;
|
|
case 'f':
|
|
Safefree(ri->data->data[n]);
|
|
break;
|
|
case 'p':
|
|
new_comppad = MUTABLE_AV(ri->data->data[n]);
|
|
break;
|
|
case 'o':
|
|
if (new_comppad == NULL)
|
|
Perl_croak(aTHX_ "panic: pregfree comppad");
|
|
PAD_SAVE_LOCAL(old_comppad,
|
|
/* Watch out for global destruction's random ordering. */
|
|
(SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
|
|
);
|
|
OP_REFCNT_LOCK;
|
|
refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
|
|
OP_REFCNT_UNLOCK;
|
|
if (!refcnt)
|
|
op_free((OP_4tree*)ri->data->data[n]);
|
|
|
|
PAD_RESTORE_LOCAL(old_comppad);
|
|
SvREFCNT_dec(MUTABLE_SV(new_comppad));
|
|
new_comppad = NULL;
|
|
break;
|
|
case 'n':
|
|
break;
|
|
case 'T':
|
|
{ /* Aho Corasick add-on structure for a trie node.
|
|
Used in stclass optimization only */
|
|
U32 refcount;
|
|
reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
|
|
OP_REFCNT_LOCK;
|
|
refcount = --aho->refcount;
|
|
OP_REFCNT_UNLOCK;
|
|
if ( !refcount ) {
|
|
PerlMemShared_free(aho->states);
|
|
PerlMemShared_free(aho->fail);
|
|
/* do this last!!!! */
|
|
PerlMemShared_free(ri->data->data[n]);
|
|
PerlMemShared_free(ri->regstclass);
|
|
}
|
|
}
|
|
break;
|
|
case 't':
|
|
{
|
|
/* trie structure. */
|
|
U32 refcount;
|
|
reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
|
|
OP_REFCNT_LOCK;
|
|
refcount = --trie->refcount;
|
|
OP_REFCNT_UNLOCK;
|
|
if ( !refcount ) {
|
|
PerlMemShared_free(trie->charmap);
|
|
PerlMemShared_free(trie->states);
|
|
PerlMemShared_free(trie->trans);
|
|
if (trie->bitmap)
|
|
PerlMemShared_free(trie->bitmap);
|
|
if (trie->jump)
|
|
PerlMemShared_free(trie->jump);
|
|
PerlMemShared_free(trie->wordinfo);
|
|
/* do this last!!!! */
|
|
PerlMemShared_free(ri->data->data[n]);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
|
|
}
|
|
}
|
|
Safefree(ri->data->what);
|
|
Safefree(ri->data);
|
|
}
|
|
|
|
Safefree(ri);
|
|
}
|
|
|
|
#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
|
|
#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
|
|
#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
|
|
|
|
/*
|
|
re_dup - duplicate a regexp.
|
|
|
|
This routine is expected to clone a given regexp structure. It is only
|
|
compiled under USE_ITHREADS.
|
|
|
|
After all of the core data stored in struct regexp is duplicated
|
|
the regexp_engine.dupe method is used to copy any private data
|
|
stored in the *pprivate pointer. This allows extensions to handle
|
|
any duplication it needs to do.
|
|
|
|
See pregfree() and regfree_internal() if you change anything here.
|
|
*/
|
|
#if defined(USE_ITHREADS)
|
|
#ifndef PERL_IN_XSUB_RE
|
|
void
|
|
Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
|
|
{
|
|
dVAR;
|
|
I32 npar;
|
|
const struct regexp *r = (const struct regexp *)SvANY(sstr);
|
|
struct regexp *ret = (struct regexp *)SvANY(dstr);
|
|
|
|
PERL_ARGS_ASSERT_RE_DUP_GUTS;
|
|
|
|
npar = r->nparens+1;
|
|
Newx(ret->offs, npar, regexp_paren_pair);
|
|
Copy(r->offs, ret->offs, npar, regexp_paren_pair);
|
|
if(ret->swap) {
|
|
/* no need to copy these */
|
|
Newx(ret->swap, npar, regexp_paren_pair);
|
|
}
|
|
|
|
if (ret->substrs) {
|
|
/* Do it this way to avoid reading from *r after the StructCopy().
|
|
That way, if any of the sv_dup_inc()s dislodge *r from the L1
|
|
cache, it doesn't matter. */
|
|
const bool anchored = r->check_substr
|
|
? r->check_substr == r->anchored_substr
|
|
: r->check_utf8 == r->anchored_utf8;
|
|
Newx(ret->substrs, 1, struct reg_substr_data);
|
|
StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
|
|
|
|
ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
|
|
ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
|
|
ret->float_substr = sv_dup_inc(ret->float_substr, param);
|
|
ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
|
|
|
|
/* check_substr and check_utf8, if non-NULL, point to either their
|
|
anchored or float namesakes, and don't hold a second reference. */
|
|
|
|
if (ret->check_substr) {
|
|
if (anchored) {
|
|
assert(r->check_utf8 == r->anchored_utf8);
|
|
ret->check_substr = ret->anchored_substr;
|
|
ret->check_utf8 = ret->anchored_utf8;
|
|
} else {
|
|
assert(r->check_substr == r->float_substr);
|
|
assert(r->check_utf8 == r->float_utf8);
|
|
ret->check_substr = ret->float_substr;
|
|
ret->check_utf8 = ret->float_utf8;
|
|
}
|
|
} else if (ret->check_utf8) {
|
|
if (anchored) {
|
|
ret->check_utf8 = ret->anchored_utf8;
|
|
} else {
|
|
ret->check_utf8 = ret->float_utf8;
|
|
}
|
|
}
|
|
}
|
|
|
|
RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
|
|
|
|
if (ret->pprivate)
|
|
RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
|
|
|
|
if (RX_MATCH_COPIED(dstr))
|
|
ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
|
|
else
|
|
ret->subbeg = NULL;
|
|
#ifdef PERL_OLD_COPY_ON_WRITE
|
|
ret->saved_copy = NULL;
|
|
#endif
|
|
|
|
if (ret->mother_re) {
|
|
if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
|
|
/* Our storage points directly to our mother regexp, but that's
|
|
1: a buffer in a different thread
|
|
2: something we no longer hold a reference on
|
|
so we need to copy it locally. */
|
|
/* Note we need to use SvCUR(), rather than
|
|
SvLEN(), on our mother_re, because it, in
|
|
turn, may well be pointing to its own mother_re. */
|
|
SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
|
|
SvCUR(ret->mother_re)+1));
|
|
SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
|
|
}
|
|
ret->mother_re = NULL;
|
|
}
|
|
ret->gofs = 0;
|
|
}
|
|
#endif /* PERL_IN_XSUB_RE */
|
|
|
|
/*
|
|
regdupe_internal()
|
|
|
|
This is the internal complement to regdupe() which is used to copy
|
|
the structure pointed to by the *pprivate pointer in the regexp.
|
|
This is the core version of the extension overridable cloning hook.
|
|
The regexp structure being duplicated will be copied by perl prior
|
|
to this and will be provided as the regexp *r argument, however
|
|
with the /old/ structures pprivate pointer value. Thus this routine
|
|
may override any copying normally done by perl.
|
|
|
|
It returns a pointer to the new regexp_internal structure.
|
|
*/
|
|
|
|
void *
|
|
Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
|
|
{
|
|
dVAR;
|
|
struct regexp *const r = (struct regexp *)SvANY(rx);
|
|
regexp_internal *reti;
|
|
int len;
|
|
RXi_GET_DECL(r,ri);
|
|
|
|
PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
|
|
|
|
len = ProgLen(ri);
|
|
|
|
Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
|
|
Copy(ri->program, reti->program, len+1, regnode);
|
|
|
|
|
|
reti->regstclass = NULL;
|
|
|
|
if (ri->data) {
|
|
struct reg_data *d;
|
|
const int count = ri->data->count;
|
|
int i;
|
|
|
|
Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
|
|
char, struct reg_data);
|
|
Newx(d->what, count, U8);
|
|
|
|
d->count = count;
|
|
for (i = 0; i < count; i++) {
|
|
d->what[i] = ri->data->what[i];
|
|
switch (d->what[i]) {
|
|
/* legal options are one of: sSfpontTua
|
|
see also regcomp.h and pregfree() */
|
|
case 'a': /* actually an AV, but the dup function is identical. */
|
|
case 's':
|
|
case 'S':
|
|
case 'p': /* actually an AV, but the dup function is identical. */
|
|
case 'u': /* actually an HV, but the dup function is identical. */
|
|
d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
|
|
break;
|
|
case 'f':
|
|
/* This is cheating. */
|
|
Newx(d->data[i], 1, struct regnode_charclass_class);
|
|
StructCopy(ri->data->data[i], d->data[i],
|
|
struct regnode_charclass_class);
|
|
reti->regstclass = (regnode*)d->data[i];
|
|
break;
|
|
case 'o':
|
|
/* Compiled op trees are readonly and in shared memory,
|
|
and can thus be shared without duplication. */
|
|
OP_REFCNT_LOCK;
|
|
d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
|
|
OP_REFCNT_UNLOCK;
|
|
break;
|
|
case 'T':
|
|
/* Trie stclasses are readonly and can thus be shared
|
|
* without duplication. We free the stclass in pregfree
|
|
* when the corresponding reg_ac_data struct is freed.
|
|
*/
|
|
reti->regstclass= ri->regstclass;
|
|
/* Fall through */
|
|
case 't':
|
|
OP_REFCNT_LOCK;
|
|
((reg_trie_data*)ri->data->data[i])->refcount++;
|
|
OP_REFCNT_UNLOCK;
|
|
/* Fall through */
|
|
case 'n':
|
|
d->data[i] = ri->data->data[i];
|
|
break;
|
|
default:
|
|
Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
|
|
}
|
|
}
|
|
|
|
reti->data = d;
|
|
}
|
|
else
|
|
reti->data = NULL;
|
|
|
|
reti->name_list_idx = ri->name_list_idx;
|
|
|
|
#ifdef RE_TRACK_PATTERN_OFFSETS
|
|
if (ri->u.offsets) {
|
|
Newx(reti->u.offsets, 2*len+1, U32);
|
|
Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
|
|
}
|
|
#else
|
|
SetProgLen(reti,len);
|
|
#endif
|
|
|
|
return (void*)reti;
|
|
}
|
|
|
|
#endif /* USE_ITHREADS */
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
|
|
/*
|
|
- regnext - dig the "next" pointer out of a node
|
|
*/
|
|
regnode *
|
|
Perl_regnext(pTHX_ register regnode *p)
|
|
{
|
|
dVAR;
|
|
register I32 offset;
|
|
|
|
if (!p)
|
|
return(NULL);
|
|
|
|
if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
|
|
Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
|
|
}
|
|
|
|
offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
|
|
if (offset == 0)
|
|
return(NULL);
|
|
|
|
return(p+offset);
|
|
}
|
|
#endif
|
|
|
|
STATIC void
|
|
S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
|
|
{
|
|
va_list args;
|
|
STRLEN l1 = strlen(pat1);
|
|
STRLEN l2 = strlen(pat2);
|
|
char buf[512];
|
|
SV *msv;
|
|
const char *message;
|
|
|
|
PERL_ARGS_ASSERT_RE_CROAK2;
|
|
|
|
if (l1 > 510)
|
|
l1 = 510;
|
|
if (l1 + l2 > 510)
|
|
l2 = 510 - l1;
|
|
Copy(pat1, buf, l1 , char);
|
|
Copy(pat2, buf + l1, l2 , char);
|
|
buf[l1 + l2] = '\n';
|
|
buf[l1 + l2 + 1] = '\0';
|
|
#ifdef I_STDARG
|
|
/* ANSI variant takes additional second argument */
|
|
va_start(args, pat2);
|
|
#else
|
|
va_start(args);
|
|
#endif
|
|
msv = vmess(buf, &args);
|
|
va_end(args);
|
|
message = SvPV_const(msv,l1);
|
|
if (l1 > 512)
|
|
l1 = 512;
|
|
Copy(message, buf, l1 , char);
|
|
buf[l1-1] = '\0'; /* Overwrite \n */
|
|
Perl_croak(aTHX_ "%s", buf);
|
|
}
|
|
|
|
/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
|
|
|
|
#ifndef PERL_IN_XSUB_RE
|
|
void
|
|
Perl_save_re_context(pTHX)
|
|
{
|
|
dVAR;
|
|
|
|
struct re_save_state *state;
|
|
|
|
SAVEVPTR(PL_curcop);
|
|
SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
|
|
|
|
state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
|
|
PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
|
|
SSPUSHUV(SAVEt_RE_STATE);
|
|
|
|
Copy(&PL_reg_state, state, 1, struct re_save_state);
|
|
|
|
PL_reg_start_tmp = 0;
|
|
PL_reg_start_tmpl = 0;
|
|
PL_reg_oldsaved = NULL;
|
|
PL_reg_oldsavedlen = 0;
|
|
PL_reg_maxiter = 0;
|
|
PL_reg_leftiter = 0;
|
|
PL_reg_poscache = NULL;
|
|
PL_reg_poscache_size = 0;
|
|
#ifdef PERL_OLD_COPY_ON_WRITE
|
|
PL_nrs = NULL;
|
|
#endif
|
|
|
|
/* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
|
|
if (PL_curpm) {
|
|
const REGEXP * const rx = PM_GETRE(PL_curpm);
|
|
if (rx) {
|
|
U32 i;
|
|
for (i = 1; i <= RX_NPARENS(rx); i++) {
|
|
char digits[TYPE_CHARS(long)];
|
|
const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
|
|
GV *const *const gvp
|
|
= (GV**)hv_fetch(PL_defstash, digits, len, 0);
|
|
|
|
if (gvp) {
|
|
GV * const gv = *gvp;
|
|
if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
|
|
save_scalar(gv);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
clear_re(pTHX_ void *r)
|
|
{
|
|
dVAR;
|
|
ReREFCNT_dec((REGEXP *)r);
|
|
}
|
|
|
|
#ifdef DEBUGGING
|
|
|
|
STATIC void
|
|
S_put_byte(pTHX_ SV *sv, int c)
|
|
{
|
|
PERL_ARGS_ASSERT_PUT_BYTE;
|
|
|
|
/* Our definition of isPRINT() ignores locales, so only bytes that are
|
|
not part of UTF-8 are considered printable. I assume that the same
|
|
holds for UTF-EBCDIC.
|
|
Also, code point 255 is not printable in either (it's E0 in EBCDIC,
|
|
which Wikipedia says:
|
|
|
|
EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
|
|
ones (binary 1111 1111, hexadecimal FF). It is similar, but not
|
|
identical, to the ASCII delete (DEL) or rubout control character.
|
|
) So the old condition can be simplified to !isPRINT(c) */
|
|
if (!isPRINT(c)) {
|
|
if (c < 256) {
|
|
Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
|
|
}
|
|
else {
|
|
Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
|
|
}
|
|
}
|
|
else {
|
|
const char string = c;
|
|
if (c == '-' || c == ']' || c == '\\' || c == '^')
|
|
sv_catpvs(sv, "\\");
|
|
sv_catpvn(sv, &string, 1);
|
|
}
|
|
}
|
|
|
|
|
|
#define CLEAR_OPTSTART \
|
|
if (optstart) STMT_START { \
|
|
DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
|
|
optstart=NULL; \
|
|
} STMT_END
|
|
|
|
#define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
|
|
|
|
STATIC const regnode *
|
|
S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
|
|
const regnode *last, const regnode *plast,
|
|
SV* sv, I32 indent, U32 depth)
|
|
{
|
|
dVAR;
|
|
register U8 op = PSEUDO; /* Arbitrary non-END op. */
|
|
register const regnode *next;
|
|
const regnode *optstart= NULL;
|
|
|
|
RXi_GET_DECL(r,ri);
|
|
GET_RE_DEBUG_FLAGS_DECL;
|
|
|
|
PERL_ARGS_ASSERT_DUMPUNTIL;
|
|
|
|
#ifdef DEBUG_DUMPUNTIL
|
|
PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
|
|
last ? last-start : 0,plast ? plast-start : 0);
|
|
#endif
|
|
|
|
if (plast && plast < last)
|
|
last= plast;
|
|
|
|
while (PL_regkind[op] != END && (!last || node < last)) {
|
|
/* While that wasn't END last time... */
|
|
NODE_ALIGN(node);
|
|
op = OP(node);
|
|
if (op == CLOSE || op == WHILEM)
|
|
indent--;
|
|
next = regnext((regnode *)node);
|
|
|
|
/* Where, what. */
|
|
if (OP(node) == OPTIMIZED) {
|
|
if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
|
|
optstart = node;
|
|
else
|
|
goto after_print;
|
|
} else
|
|
CLEAR_OPTSTART;
|
|
|
|
regprop(r, sv, node);
|
|
PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
|
|
(int)(2*indent + 1), "", SvPVX_const(sv));
|
|
|
|
if (OP(node) != OPTIMIZED) {
|
|
if (next == NULL) /* Next ptr. */
|
|
PerlIO_printf(Perl_debug_log, " (0)");
|
|
else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
|
|
PerlIO_printf(Perl_debug_log, " (FAIL)");
|
|
else
|
|
PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
|
|
(void)PerlIO_putc(Perl_debug_log, '\n');
|
|
}
|
|
|
|
after_print:
|
|
if (PL_regkind[(U8)op] == BRANCHJ) {
|
|
assert(next);
|
|
{
|
|
register const regnode *nnode = (OP(next) == LONGJMP
|
|
? regnext((regnode *)next)
|
|
: next);
|
|
if (last && nnode > last)
|
|
nnode = last;
|
|
DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
|
|
}
|
|
}
|
|
else if (PL_regkind[(U8)op] == BRANCH) {
|
|
assert(next);
|
|
DUMPUNTIL(NEXTOPER(node), next);
|
|
}
|
|
else if ( PL_regkind[(U8)op] == TRIE ) {
|
|
const regnode *this_trie = node;
|
|
const char op = OP(node);
|
|
const U32 n = ARG(node);
|
|
const reg_ac_data * const ac = op>=AHOCORASICK ?
|
|
(reg_ac_data *)ri->data->data[n] :
|
|
NULL;
|
|
const reg_trie_data * const trie =
|
|
(reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
|
|
#ifdef DEBUGGING
|
|
AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
|
|
#endif
|
|
const regnode *nextbranch= NULL;
|
|
I32 word_idx;
|
|
sv_setpvs(sv, "");
|
|
for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
|
|
SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
|
|
|
|
PerlIO_printf(Perl_debug_log, "%*s%s ",
|
|
(int)(2*(indent+3)), "",
|
|
elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
|
|
PL_colors[0], PL_colors[1],
|
|
(SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
|
|
PERL_PV_PRETTY_ELLIPSES |
|
|
PERL_PV_PRETTY_LTGT
|
|
)
|
|
: "???"
|
|
);
|
|
if (trie->jump) {
|
|
U16 dist= trie->jump[word_idx+1];
|
|
PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
|
|
(UV)((dist ? this_trie + dist : next) - start));
|
|
if (dist) {
|
|
if (!nextbranch)
|
|
nextbranch= this_trie + trie->jump[0];
|
|
DUMPUNTIL(this_trie + dist, nextbranch);
|
|
}
|
|
if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
|
|
nextbranch= regnext((regnode *)nextbranch);
|
|
} else {
|
|
PerlIO_printf(Perl_debug_log, "\n");
|
|
}
|
|
}
|
|
if (last && next > last)
|
|
node= last;
|
|
else
|
|
node= next;
|
|
}
|
|
else if ( op == CURLY ) { /* "next" might be very big: optimizer */
|
|
DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
|
|
NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
|
|
}
|
|
else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
|
|
assert(next);
|
|
DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
|
|
}
|
|
else if ( op == PLUS || op == STAR) {
|
|
DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
|
|
}
|
|
else if (PL_regkind[(U8)op] == ANYOF) {
|
|
/* arglen 1 + class block */
|
|
node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
|
|
? ANYOF_CLASS_SKIP : ANYOF_SKIP);
|
|
node = NEXTOPER(node);
|
|
}
|
|
else if (PL_regkind[(U8)op] == EXACT) {
|
|
/* Literal string, where present. */
|
|
node += NODE_SZ_STR(node) - 1;
|
|
node = NEXTOPER(node);
|
|
}
|
|
else {
|
|
node = NEXTOPER(node);
|
|
node += regarglen[(U8)op];
|
|
}
|
|
if (op == CURLYX || op == OPEN)
|
|
indent++;
|
|
}
|
|
CLEAR_OPTSTART;
|
|
#ifdef DEBUG_DUMPUNTIL
|
|
PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
|
|
#endif
|
|
return node;
|
|
}
|
|
|
|
#endif /* DEBUGGING */
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indentation-style: bsd
|
|
* c-basic-offset: 4
|
|
* indent-tabs-mode: nil
|
|
* End:
|
|
*
|
|
* ex: set ts=8 sts=4 sw=4 et:
|
|
*/
|