mirror of
https://github.com/Perl/perl5.git
synced 2026-01-26 16:39:36 +00:00
From: "Paul Marquess" <paul_marquess@yahoo.co.uk> Message-ID: <AIEAJICLCBDNAAOLLOKLMEEGDPAA.paul_marquess@yahoo.co.uk> p4raw-id: //depot/perl@15155
933 lines
27 KiB
C
933 lines
27 KiB
C
/* numeric.c
|
|
*
|
|
* Copyright (c) 2001-2002, Larry Wall
|
|
*
|
|
* You may distribute under the terms of either the GNU General Public
|
|
* License or the Artistic License, as specified in the README file.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* "That only makes eleven (plus one mislaid) and not fourteen, unless
|
|
* wizards count differently to other people."
|
|
*/
|
|
|
|
/*
|
|
=head1 Numeric functions
|
|
*/
|
|
|
|
#include "EXTERN.h"
|
|
#define PERL_IN_NUMERIC_C
|
|
#include "perl.h"
|
|
|
|
U32
|
|
Perl_cast_ulong(pTHX_ NV f)
|
|
{
|
|
if (f < 0.0)
|
|
return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
|
|
if (f < U32_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
if (f < U32_MAX_P1_HALF)
|
|
return (U32) f;
|
|
f -= U32_MAX_P1_HALF;
|
|
return ((U32) f) | (1 + U32_MAX >> 1);
|
|
#else
|
|
return (U32) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? U32_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
I32
|
|
Perl_cast_i32(pTHX_ NV f)
|
|
{
|
|
if (f < I32_MAX_P1)
|
|
return f < I32_MIN ? I32_MIN : (I32) f;
|
|
if (f < U32_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
if (f < U32_MAX_P1_HALF)
|
|
return (I32)(U32) f;
|
|
f -= U32_MAX_P1_HALF;
|
|
return (I32)(((U32) f) | (1 + U32_MAX >> 1));
|
|
#else
|
|
return (I32)(U32) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
IV
|
|
Perl_cast_iv(pTHX_ NV f)
|
|
{
|
|
if (f < IV_MAX_P1)
|
|
return f < IV_MIN ? IV_MIN : (IV) f;
|
|
if (f < UV_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
/* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
|
|
if (f < UV_MAX_P1_HALF)
|
|
return (IV)(UV) f;
|
|
f -= UV_MAX_P1_HALF;
|
|
return (IV)(((UV) f) | (1 + UV_MAX >> 1));
|
|
#else
|
|
return (IV)(UV) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
UV
|
|
Perl_cast_uv(pTHX_ NV f)
|
|
{
|
|
if (f < 0.0)
|
|
return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
|
|
if (f < UV_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
if (f < UV_MAX_P1_HALF)
|
|
return (UV) f;
|
|
f -= UV_MAX_P1_HALF;
|
|
return ((UV) f) | (1 + UV_MAX >> 1);
|
|
#else
|
|
return (UV) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? UV_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
#if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL))
|
|
/*
|
|
* This hack is to force load of "huge" support from libm.a
|
|
* So it is in perl for (say) POSIX to use.
|
|
* Needed for SunOS with Sun's 'acc' for example.
|
|
*/
|
|
NV
|
|
Perl_huge(void)
|
|
{
|
|
# if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)
|
|
return HUGE_VALL;
|
|
# endif
|
|
return HUGE_VAL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
=for apidoc grok_bin
|
|
|
|
converts a string representing a binary number to numeric form.
|
|
|
|
On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
|
conversion flags, and I<result> should be NULL or a pointer to an NV.
|
|
The scan stops at the end of the string, or the first invalid character.
|
|
On return I<*len> is set to the length scanned string, and I<*flags> gives
|
|
output flags.
|
|
|
|
If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
|
|
and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
|
|
returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
|
and writes the value to I<*result> (or the value is discarded if I<result>
|
|
is NULL).
|
|
|
|
The hex number may optionally be prefixed with "0b" or "b" unless
|
|
C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
|
|
C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
|
|
number may use '_' characters to separate digits.
|
|
|
|
=cut
|
|
*/
|
|
|
|
UV
|
|
Perl_grok_bin(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
|
|
const char *s = start;
|
|
STRLEN len = *len_p;
|
|
UV value = 0;
|
|
NV value_nv = 0;
|
|
|
|
const UV max_div_2 = UV_MAX / 2;
|
|
bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES;
|
|
bool overflowed = FALSE;
|
|
|
|
if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
|
/* strip off leading b or 0b.
|
|
for compatibility silently suffer "b" and "0b" as valid binary
|
|
numbers. */
|
|
if (len >= 1) {
|
|
if (s[0] == 'b') {
|
|
s++;
|
|
len--;
|
|
}
|
|
else if (len >= 2 && s[0] == '0' && s[1] == 'b') {
|
|
s+=2;
|
|
len-=2;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; len-- && *s; s++) {
|
|
char bit = *s;
|
|
if (bit == '0' || bit == '1') {
|
|
/* Write it in this wonky order with a goto to attempt to get the
|
|
compiler to make the common case integer-only loop pretty tight.
|
|
With gcc seems to be much straighter code than old scan_bin. */
|
|
redo:
|
|
if (!overflowed) {
|
|
if (value <= max_div_2) {
|
|
value = (value << 1) | (bit - '0');
|
|
continue;
|
|
}
|
|
/* Bah. We're just overflowed. */
|
|
if (ckWARN_d(WARN_OVERFLOW))
|
|
Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
|
|
"Integer overflow in binary number");
|
|
overflowed = TRUE;
|
|
value_nv = (NV) value;
|
|
}
|
|
value_nv *= 2.0;
|
|
/* If an NV has not enough bits in its mantissa to
|
|
* represent a UV this summing of small low-order numbers
|
|
* is a waste of time (because the NV cannot preserve
|
|
* the low-order bits anyway): we could just remember when
|
|
* did we overflow and in the end just multiply value_nv by the
|
|
* right amount. */
|
|
value_nv += (NV)(bit - '0');
|
|
continue;
|
|
}
|
|
if (bit == '_' && len && allow_underscores && (bit = s[1])
|
|
&& (bit == '0' || bit == '1'))
|
|
{
|
|
--len;
|
|
++s;
|
|
goto redo;
|
|
}
|
|
if (ckWARN(WARN_DIGIT))
|
|
Perl_warner(aTHX_ packWARN(WARN_DIGIT),
|
|
"Illegal binary digit '%c' ignored", *s);
|
|
break;
|
|
}
|
|
|
|
if ( ( overflowed && value_nv > 4294967295.0)
|
|
#if UVSIZE > 4
|
|
|| (!overflowed && value > 0xffffffff )
|
|
#endif
|
|
) {
|
|
if (ckWARN(WARN_PORTABLE))
|
|
Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
|
|
"Binary number > 0b11111111111111111111111111111111 non-portable");
|
|
}
|
|
*len_p = s - start;
|
|
if (!overflowed) {
|
|
*flags = 0;
|
|
return value;
|
|
}
|
|
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
|
if (result)
|
|
*result = value_nv;
|
|
return UV_MAX;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_hex
|
|
|
|
converts a string representing a hex number to numeric form.
|
|
|
|
On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
|
conversion flags, and I<result> should be NULL or a pointer to an NV.
|
|
The scan stops at the end of the string, or the first non-hex-digit character.
|
|
On return I<*len> is set to the length scanned string, and I<*flags> gives
|
|
output flags.
|
|
|
|
If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
|
|
and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
|
|
returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
|
and writes the value to I<*result> (or the value is discarded if I<result>
|
|
is NULL).
|
|
|
|
The hex number may optionally be prefixed with "0x" or "x" unless
|
|
C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
|
|
C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
|
|
number may use '_' characters to separate digits.
|
|
|
|
=cut
|
|
*/
|
|
|
|
UV
|
|
Perl_grok_hex(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
|
|
const char *s = start;
|
|
STRLEN len = *len_p;
|
|
UV value = 0;
|
|
NV value_nv = 0;
|
|
|
|
const UV max_div_16 = UV_MAX / 16;
|
|
bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES;
|
|
bool overflowed = FALSE;
|
|
const char *hexdigit;
|
|
|
|
if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
|
/* strip off leading x or 0x.
|
|
for compatibility silently suffer "x" and "0x" as valid hex numbers.
|
|
*/
|
|
if (len >= 1) {
|
|
if (s[0] == 'x') {
|
|
s++;
|
|
len--;
|
|
}
|
|
else if (len >= 2 && s[0] == '0' && s[1] == 'x') {
|
|
s+=2;
|
|
len-=2;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; len-- && *s; s++) {
|
|
hexdigit = strchr((char *) PL_hexdigit, *s);
|
|
if (hexdigit) {
|
|
/* Write it in this wonky order with a goto to attempt to get the
|
|
compiler to make the common case integer-only loop pretty tight.
|
|
With gcc seems to be much straighter code than old scan_hex. */
|
|
redo:
|
|
if (!overflowed) {
|
|
if (value <= max_div_16) {
|
|
value = (value << 4) | ((hexdigit - PL_hexdigit) & 15);
|
|
continue;
|
|
}
|
|
/* Bah. We're just overflowed. */
|
|
if (ckWARN_d(WARN_OVERFLOW))
|
|
Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
|
|
"Integer overflow in hexadecimal number");
|
|
overflowed = TRUE;
|
|
value_nv = (NV) value;
|
|
}
|
|
value_nv *= 16.0;
|
|
/* If an NV has not enough bits in its mantissa to
|
|
* represent a UV this summing of small low-order numbers
|
|
* is a waste of time (because the NV cannot preserve
|
|
* the low-order bits anyway): we could just remember when
|
|
* did we overflow and in the end just multiply value_nv by the
|
|
* right amount of 16-tuples. */
|
|
value_nv += (NV)((hexdigit - PL_hexdigit) & 15);
|
|
continue;
|
|
}
|
|
if (*s == '_' && len && allow_underscores && s[1]
|
|
&& (hexdigit = strchr((char *) PL_hexdigit, s[1])))
|
|
{
|
|
--len;
|
|
++s;
|
|
goto redo;
|
|
}
|
|
if (ckWARN(WARN_DIGIT))
|
|
Perl_warner(aTHX_ packWARN(WARN_DIGIT),
|
|
"Illegal hexadecimal digit '%c' ignored", *s);
|
|
break;
|
|
}
|
|
|
|
if ( ( overflowed && value_nv > 4294967295.0)
|
|
#if UVSIZE > 4
|
|
|| (!overflowed && value > 0xffffffff )
|
|
#endif
|
|
) {
|
|
if (ckWARN(WARN_PORTABLE))
|
|
Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
|
|
"Hexadecimal number > 0xffffffff non-portable");
|
|
}
|
|
*len_p = s - start;
|
|
if (!overflowed) {
|
|
*flags = 0;
|
|
return value;
|
|
}
|
|
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
|
if (result)
|
|
*result = value_nv;
|
|
return UV_MAX;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_oct
|
|
|
|
|
|
=cut
|
|
*/
|
|
|
|
UV
|
|
Perl_grok_oct(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
|
|
const char *s = start;
|
|
STRLEN len = *len_p;
|
|
UV value = 0;
|
|
NV value_nv = 0;
|
|
|
|
const UV max_div_8 = UV_MAX / 8;
|
|
bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES;
|
|
bool overflowed = FALSE;
|
|
|
|
for (; len-- && *s; s++) {
|
|
/* gcc 2.95 optimiser not smart enough to figure that this subtraction
|
|
out front allows slicker code. */
|
|
int digit = *s - '0';
|
|
if (digit >= 0 && digit <= 7) {
|
|
/* Write it in this wonky order with a goto to attempt to get the
|
|
compiler to make the common case integer-only loop pretty tight.
|
|
*/
|
|
redo:
|
|
if (!overflowed) {
|
|
if (value <= max_div_8) {
|
|
value = (value << 3) | digit;
|
|
continue;
|
|
}
|
|
/* Bah. We're just overflowed. */
|
|
if (ckWARN_d(WARN_OVERFLOW))
|
|
Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
|
|
"Integer overflow in octal number");
|
|
overflowed = TRUE;
|
|
value_nv = (NV) value;
|
|
}
|
|
value_nv *= 8.0;
|
|
/* If an NV has not enough bits in its mantissa to
|
|
* represent a UV this summing of small low-order numbers
|
|
* is a waste of time (because the NV cannot preserve
|
|
* the low-order bits anyway): we could just remember when
|
|
* did we overflow and in the end just multiply value_nv by the
|
|
* right amount of 8-tuples. */
|
|
value_nv += (NV)digit;
|
|
continue;
|
|
}
|
|
if (digit == ('_' - '0') && len && allow_underscores
|
|
&& (digit = s[1] - '0') && (digit >= 0 && digit <= 7))
|
|
{
|
|
--len;
|
|
++s;
|
|
goto redo;
|
|
}
|
|
/* Allow \octal to work the DWIM way (that is, stop scanning
|
|
* as soon as non-octal characters are seen, complain only iff
|
|
* someone seems to want to use the digits eight and nine). */
|
|
if (digit == 8 || digit == 9) {
|
|
if (ckWARN(WARN_DIGIT))
|
|
Perl_warner(aTHX_ packWARN(WARN_DIGIT),
|
|
"Illegal octal digit '%c' ignored", *s);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if ( ( overflowed && value_nv > 4294967295.0)
|
|
#if UVSIZE > 4
|
|
|| (!overflowed && value > 0xffffffff )
|
|
#endif
|
|
) {
|
|
if (ckWARN(WARN_PORTABLE))
|
|
Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
|
|
"Octal number > 037777777777 non-portable");
|
|
}
|
|
*len_p = s - start;
|
|
if (!overflowed) {
|
|
*flags = 0;
|
|
return value;
|
|
}
|
|
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
|
if (result)
|
|
*result = value_nv;
|
|
return UV_MAX;
|
|
}
|
|
|
|
/*
|
|
=for apidoc scan_bin
|
|
|
|
For backwards compatibility. Use C<grok_bin> instead.
|
|
|
|
=for apidoc scan_hex
|
|
|
|
For backwards compatibility. Use C<grok_hex> instead.
|
|
|
|
=for apidoc scan_oct
|
|
|
|
For backwards compatibility. Use C<grok_oct> instead.
|
|
|
|
=cut
|
|
*/
|
|
|
|
NV
|
|
Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen)
|
|
{
|
|
NV rnv;
|
|
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
|
UV ruv = grok_bin (start, &len, &flags, &rnv);
|
|
|
|
*retlen = len;
|
|
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
|
}
|
|
|
|
NV
|
|
Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen)
|
|
{
|
|
NV rnv;
|
|
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
|
UV ruv = grok_oct (start, &len, &flags, &rnv);
|
|
|
|
*retlen = len;
|
|
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
|
}
|
|
|
|
NV
|
|
Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen)
|
|
{
|
|
NV rnv;
|
|
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
|
UV ruv = grok_hex (start, &len, &flags, &rnv);
|
|
|
|
*retlen = len;
|
|
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_numeric_radix
|
|
|
|
Scan and skip for a numeric decimal separator (radix).
|
|
|
|
=cut
|
|
*/
|
|
bool
|
|
Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
|
|
{
|
|
#ifdef USE_LOCALE_NUMERIC
|
|
if (PL_numeric_radix_sv && IN_LOCALE) {
|
|
STRLEN len;
|
|
char* radix = SvPV(PL_numeric_radix_sv, len);
|
|
if (*sp + len <= send && memEQ(*sp, radix, len)) {
|
|
*sp += len;
|
|
return TRUE;
|
|
}
|
|
}
|
|
/* always try "." if numeric radix didn't match because
|
|
* we may have data from different locales mixed */
|
|
#endif
|
|
if (*sp < send && **sp == '.') {
|
|
++*sp;
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_number
|
|
|
|
Recognise (or not) a number. The type of the number is returned
|
|
(0 if unrecognised), otherwise it is a bit-ORed combination of
|
|
IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
|
|
IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
|
|
|
|
If the value of the number can fit an in UV, it is returned in the *valuep
|
|
IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
|
|
will never be set unless *valuep is valid, but *valuep may have been assigned
|
|
to during processing even though IS_NUMBER_IN_UV is not set on return.
|
|
If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
|
|
valuep is non-NULL, but no actual assignment (or SEGV) will occur.
|
|
|
|
IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
|
|
seen (in which case *valuep gives the true value truncated to an integer), and
|
|
IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
|
|
absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
|
|
number is larger than a UV.
|
|
|
|
=cut
|
|
*/
|
|
int
|
|
Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
|
|
{
|
|
const char *s = pv;
|
|
const char *send = pv + len;
|
|
const UV max_div_10 = UV_MAX / 10;
|
|
const char max_mod_10 = UV_MAX % 10;
|
|
int numtype = 0;
|
|
int sawinf = 0;
|
|
int sawnan = 0;
|
|
|
|
while (s < send && isSPACE(*s))
|
|
s++;
|
|
if (s == send) {
|
|
return 0;
|
|
} else if (*s == '-') {
|
|
s++;
|
|
numtype = IS_NUMBER_NEG;
|
|
}
|
|
else if (*s == '+')
|
|
s++;
|
|
|
|
if (s == send)
|
|
return 0;
|
|
|
|
/* next must be digit or the radix separator or beginning of infinity */
|
|
if (isDIGIT(*s)) {
|
|
/* UVs are at least 32 bits, so the first 9 decimal digits cannot
|
|
overflow. */
|
|
UV value = *s - '0';
|
|
/* This construction seems to be more optimiser friendly.
|
|
(without it gcc does the isDIGIT test and the *s - '0' separately)
|
|
With it gcc on arm is managing 6 instructions (6 cycles) per digit.
|
|
In theory the optimiser could deduce how far to unroll the loop
|
|
before checking for overflow. */
|
|
if (++s < send) {
|
|
int digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
/* Now got 9 digits, so need to check
|
|
each time for overflow. */
|
|
digit = *s - '0';
|
|
while (digit >= 0 && digit <= 9
|
|
&& (value < max_div_10
|
|
|| (value == max_div_10
|
|
&& digit <= max_mod_10))) {
|
|
value = value * 10 + digit;
|
|
if (++s < send)
|
|
digit = *s - '0';
|
|
else
|
|
break;
|
|
}
|
|
if (digit >= 0 && digit <= 9
|
|
&& (s < send)) {
|
|
/* value overflowed.
|
|
skip the remaining digits, don't
|
|
worry about setting *valuep. */
|
|
do {
|
|
s++;
|
|
} while (s < send && isDIGIT(*s));
|
|
numtype |=
|
|
IS_NUMBER_GREATER_THAN_UV_MAX;
|
|
goto skip_value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
numtype |= IS_NUMBER_IN_UV;
|
|
if (valuep)
|
|
*valuep = value;
|
|
|
|
skip_value:
|
|
if (GROK_NUMERIC_RADIX(&s, send)) {
|
|
numtype |= IS_NUMBER_NOT_INT;
|
|
while (s < send && isDIGIT(*s)) /* optional digits after the radix */
|
|
s++;
|
|
}
|
|
}
|
|
else if (GROK_NUMERIC_RADIX(&s, send)) {
|
|
numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
|
|
/* no digits before the radix means we need digits after it */
|
|
if (s < send && isDIGIT(*s)) {
|
|
do {
|
|
s++;
|
|
} while (s < send && isDIGIT(*s));
|
|
if (valuep) {
|
|
/* integer approximation is valid - it's 0. */
|
|
*valuep = 0;
|
|
}
|
|
}
|
|
else
|
|
return 0;
|
|
} else if (*s == 'I' || *s == 'i') {
|
|
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
|
s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
|
|
s++; if (s < send && (*s == 'I' || *s == 'i')) {
|
|
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
|
s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
|
|
s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
|
|
s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
|
|
s++;
|
|
}
|
|
sawinf = 1;
|
|
} else if (*s == 'N' || *s == 'n') {
|
|
/* XXX TODO: There are signaling NaNs and quiet NaNs. */
|
|
s++; if (s == send || (*s != 'A' && *s != 'a')) return 0;
|
|
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
|
s++;
|
|
sawnan = 1;
|
|
} else
|
|
return 0;
|
|
|
|
if (sawinf) {
|
|
numtype &= IS_NUMBER_NEG; /* Keep track of sign */
|
|
numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
|
|
} else if (sawnan) {
|
|
numtype &= IS_NUMBER_NEG; /* Keep track of sign */
|
|
numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
|
|
} else if (s < send) {
|
|
/* we can have an optional exponent part */
|
|
if (*s == 'e' || *s == 'E') {
|
|
/* The only flag we keep is sign. Blow away any "it's UV" */
|
|
numtype &= IS_NUMBER_NEG;
|
|
numtype |= IS_NUMBER_NOT_INT;
|
|
s++;
|
|
if (s < send && (*s == '-' || *s == '+'))
|
|
s++;
|
|
if (s < send && isDIGIT(*s)) {
|
|
do {
|
|
s++;
|
|
} while (s < send && isDIGIT(*s));
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
while (s < send && isSPACE(*s))
|
|
s++;
|
|
if (s >= send)
|
|
return numtype;
|
|
if (len == 10 && memEQ(pv, "0 but true", 10)) {
|
|
if (valuep)
|
|
*valuep = 0;
|
|
return IS_NUMBER_IN_UV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
NV
|
|
S_mulexp10(NV value, I32 exponent)
|
|
{
|
|
NV result = 1.0;
|
|
NV power = 10.0;
|
|
bool negative = 0;
|
|
I32 bit;
|
|
|
|
if (exponent == 0)
|
|
return value;
|
|
else if (exponent < 0) {
|
|
negative = 1;
|
|
exponent = -exponent;
|
|
}
|
|
|
|
/* On OpenVMS VAX we by default use the D_FLOAT double format,
|
|
* and that format does not have *easy* capabilities [1] for
|
|
* overflowing doubles 'silently' as IEEE fp does. We also need
|
|
* to support G_FLOAT on both VAX and Alpha, and though the exponent
|
|
* range is much larger than D_FLOAT it still doesn't do silent
|
|
* overflow. Therefore we need to detect early whether we would
|
|
* overflow (this is the behaviour of the native string-to-float
|
|
* conversion routines, and therefore of native applications, too).
|
|
*
|
|
* [1] Trying to establish a condition handler to trap floating point
|
|
* exceptions is not a good idea. */
|
|
#if defined(VMS) && !defined(__IEEE_FP) && defined(NV_MAX_10_EXP)
|
|
if (!negative &&
|
|
(log10(value) + exponent) >= (NV_MAX_10_EXP))
|
|
return NV_MAX;
|
|
#endif
|
|
|
|
/* In UNICOS and in certain Cray models (such as T90) there is no
|
|
* IEEE fp, and no way at all from C to catch fp overflows gracefully.
|
|
* There is something you can do if you are willing to use some
|
|
* inline assembler: the instruction is called DFI-- but that will
|
|
* disable *all* floating point interrupts, a little bit too large
|
|
* a hammer. Therefore we need to catch potential overflows before
|
|
* it's too late. */
|
|
#if defined(_UNICOS) && defined(NV_MAX_10_EXP)
|
|
if (!negative &&
|
|
(log10(value) + exponent) >= NV_MAX_10_EXP)
|
|
return NV_MAX;
|
|
#endif
|
|
|
|
for (bit = 1; exponent; bit <<= 1) {
|
|
if (exponent & bit) {
|
|
exponent ^= bit;
|
|
result *= power;
|
|
}
|
|
/* Floating point exceptions are supposed to be turned off. */
|
|
power *= power;
|
|
}
|
|
return negative ? value / result : value * result;
|
|
}
|
|
|
|
NV
|
|
Perl_my_atof(pTHX_ const char* s)
|
|
{
|
|
NV x = 0.0;
|
|
#ifdef USE_LOCALE_NUMERIC
|
|
if (PL_numeric_local && IN_LOCALE) {
|
|
NV y;
|
|
|
|
/* Scan the number twice; once using locale and once without;
|
|
* choose the larger result (in absolute value). */
|
|
Perl_atof2(aTHX_ s, &x);
|
|
SET_NUMERIC_STANDARD();
|
|
Perl_atof2(aTHX_ s, &y);
|
|
SET_NUMERIC_LOCAL();
|
|
if ((y < 0.0 && y < x) || (y > 0.0 && y > x))
|
|
return y;
|
|
}
|
|
else
|
|
Perl_atof2(aTHX_ s, &x);
|
|
#else
|
|
Perl_atof2(aTHX_ s, &x);
|
|
#endif
|
|
return x;
|
|
}
|
|
|
|
char*
|
|
Perl_my_atof2(pTHX_ const char* orig, NV* value)
|
|
{
|
|
NV result = 0.0;
|
|
bool negative = 0;
|
|
char* s = (char*)orig;
|
|
char* send = s + strlen(orig) - 1;
|
|
bool seendigit = 0;
|
|
I32 expextra = 0;
|
|
I32 exponent = 0;
|
|
I32 i;
|
|
/* this is arbitrary */
|
|
#define PARTLIM 6
|
|
/* we want the largest integers we can usefully use */
|
|
#if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
|
|
# define PARTSIZE ((int)TYPE_DIGITS(U64)-1)
|
|
U64 part[PARTLIM];
|
|
#else
|
|
# define PARTSIZE ((int)TYPE_DIGITS(U32)-1)
|
|
U32 part[PARTLIM];
|
|
#endif
|
|
I32 ipart = 0; /* index into part[] */
|
|
I32 offcount; /* number of digits in least significant part */
|
|
|
|
/* leading whitespace */
|
|
while (isSPACE(*s))
|
|
++s;
|
|
|
|
/* sign */
|
|
switch (*s) {
|
|
case '-':
|
|
negative = 1;
|
|
/* fall through */
|
|
case '+':
|
|
++s;
|
|
}
|
|
|
|
part[0] = offcount = 0;
|
|
if (isDIGIT(*s)) {
|
|
seendigit = 1; /* get this over with */
|
|
|
|
/* skip leading zeros */
|
|
while (*s == '0')
|
|
++s;
|
|
}
|
|
|
|
/* integer digits */
|
|
while (isDIGIT(*s)) {
|
|
if (++offcount > PARTSIZE) {
|
|
if (++ipart < PARTLIM) {
|
|
part[ipart] = 0;
|
|
offcount = 1; /* ++0 */
|
|
}
|
|
else {
|
|
/* limits of precision reached */
|
|
--ipart;
|
|
--offcount;
|
|
if (*s >= '5')
|
|
++part[ipart];
|
|
while (isDIGIT(*s)) {
|
|
++expextra;
|
|
++s;
|
|
}
|
|
/* warn of loss of precision? */
|
|
break;
|
|
}
|
|
}
|
|
part[ipart] = part[ipart] * 10 + (*s++ - '0');
|
|
}
|
|
|
|
/* decimal point */
|
|
if (GROK_NUMERIC_RADIX((const char **)&s, send)) {
|
|
if (isDIGIT(*s))
|
|
seendigit = 1; /* get this over with */
|
|
|
|
/* decimal digits */
|
|
while (isDIGIT(*s)) {
|
|
if (++offcount > PARTSIZE) {
|
|
if (++ipart < PARTLIM) {
|
|
part[ipart] = 0;
|
|
offcount = 1; /* ++0 */
|
|
}
|
|
else {
|
|
/* limits of precision reached */
|
|
--ipart;
|
|
--offcount;
|
|
if (*s >= '5')
|
|
++part[ipart];
|
|
while (isDIGIT(*s))
|
|
++s;
|
|
/* warn of loss of precision? */
|
|
break;
|
|
}
|
|
}
|
|
--expextra;
|
|
part[ipart] = part[ipart] * 10 + (*s++ - '0');
|
|
}
|
|
}
|
|
|
|
/* combine components of mantissa */
|
|
for (i = 0; i <= ipart; ++i)
|
|
result += S_mulexp10((NV)part[ipart - i],
|
|
i ? offcount + (i - 1) * PARTSIZE : 0);
|
|
|
|
if (seendigit && (*s == 'e' || *s == 'E')) {
|
|
bool expnegative = 0;
|
|
|
|
++s;
|
|
switch (*s) {
|
|
case '-':
|
|
expnegative = 1;
|
|
/* fall through */
|
|
case '+':
|
|
++s;
|
|
}
|
|
while (isDIGIT(*s))
|
|
exponent = exponent * 10 + (*s++ - '0');
|
|
if (expnegative)
|
|
exponent = -exponent;
|
|
}
|
|
|
|
/* now apply the exponent */
|
|
exponent += expextra;
|
|
result = S_mulexp10(result, exponent);
|
|
|
|
/* now apply the sign */
|
|
if (negative)
|
|
result = -result;
|
|
*value = result;
|
|
return s;
|
|
}
|
|
|