mirror of
https://github.com/Perl/perl5.git
synced 2026-01-27 01:44:43 +00:00
In two instances, I actually modified to code to avoid %s for a constant string, as it should be faster that way.
1113 lines
33 KiB
C
1113 lines
33 KiB
C
/* numeric.c
|
|
*
|
|
* Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
|
|
* 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
|
|
*
|
|
* You may distribute under the terms of either the GNU General Public
|
|
* License or the Artistic License, as specified in the README file.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* "That only makes eleven (plus one mislaid) and not fourteen,
|
|
* unless wizards count differently to other people." --Beorn
|
|
*
|
|
* [p.115 of _The Hobbit_: "Queer Lodgings"]
|
|
*/
|
|
|
|
/*
|
|
=head1 Numeric functions
|
|
|
|
This file contains all the stuff needed by perl for manipulating numeric
|
|
values, including such things as replacements for the OS's atof() function
|
|
|
|
=cut
|
|
|
|
*/
|
|
|
|
#include "EXTERN.h"
|
|
#define PERL_IN_NUMERIC_C
|
|
#include "perl.h"
|
|
|
|
U32
|
|
Perl_cast_ulong(pTHX_ NV f)
|
|
{
|
|
PERL_UNUSED_CONTEXT;
|
|
if (f < 0.0)
|
|
return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
|
|
if (f < U32_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
if (f < U32_MAX_P1_HALF)
|
|
return (U32) f;
|
|
f -= U32_MAX_P1_HALF;
|
|
return ((U32) f) | (1 + U32_MAX >> 1);
|
|
#else
|
|
return (U32) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? U32_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
I32
|
|
Perl_cast_i32(pTHX_ NV f)
|
|
{
|
|
PERL_UNUSED_CONTEXT;
|
|
if (f < I32_MAX_P1)
|
|
return f < I32_MIN ? I32_MIN : (I32) f;
|
|
if (f < U32_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
if (f < U32_MAX_P1_HALF)
|
|
return (I32)(U32) f;
|
|
f -= U32_MAX_P1_HALF;
|
|
return (I32)(((U32) f) | (1 + U32_MAX >> 1));
|
|
#else
|
|
return (I32)(U32) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
IV
|
|
Perl_cast_iv(pTHX_ NV f)
|
|
{
|
|
PERL_UNUSED_CONTEXT;
|
|
if (f < IV_MAX_P1)
|
|
return f < IV_MIN ? IV_MIN : (IV) f;
|
|
if (f < UV_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
/* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
|
|
if (f < UV_MAX_P1_HALF)
|
|
return (IV)(UV) f;
|
|
f -= UV_MAX_P1_HALF;
|
|
return (IV)(((UV) f) | (1 + UV_MAX >> 1));
|
|
#else
|
|
return (IV)(UV) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
UV
|
|
Perl_cast_uv(pTHX_ NV f)
|
|
{
|
|
PERL_UNUSED_CONTEXT;
|
|
if (f < 0.0)
|
|
return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
|
|
if (f < UV_MAX_P1) {
|
|
#if CASTFLAGS & 2
|
|
if (f < UV_MAX_P1_HALF)
|
|
return (UV) f;
|
|
f -= UV_MAX_P1_HALF;
|
|
return ((UV) f) | (1 + UV_MAX >> 1);
|
|
#else
|
|
return (UV) f;
|
|
#endif
|
|
}
|
|
return f > 0 ? UV_MAX : 0 /* NaN */;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_bin
|
|
|
|
converts a string representing a binary number to numeric form.
|
|
|
|
On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
|
conversion flags, and I<result> should be NULL or a pointer to an NV.
|
|
The scan stops at the end of the string, or the first invalid character.
|
|
Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
|
|
invalid character will also trigger a warning.
|
|
On return I<*len> is set to the length of the scanned string,
|
|
and I<*flags> gives output flags.
|
|
|
|
If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
|
|
and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
|
|
returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
|
and writes the value to I<*result> (or the value is discarded if I<result>
|
|
is NULL).
|
|
|
|
The binary number may optionally be prefixed with "0b" or "b" unless
|
|
C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
|
|
C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
|
|
number may use '_' characters to separate digits.
|
|
|
|
=cut
|
|
|
|
Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
|
|
which suppresses any message for non-portable numbers that are still valid
|
|
on this platform.
|
|
*/
|
|
|
|
UV
|
|
Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
|
|
{
|
|
const char *s = start;
|
|
STRLEN len = *len_p;
|
|
UV value = 0;
|
|
NV value_nv = 0;
|
|
|
|
const UV max_div_2 = UV_MAX / 2;
|
|
const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
|
bool overflowed = FALSE;
|
|
char bit;
|
|
|
|
PERL_ARGS_ASSERT_GROK_BIN;
|
|
|
|
if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
|
/* strip off leading b or 0b.
|
|
for compatibility silently suffer "b" and "0b" as valid binary
|
|
numbers. */
|
|
if (len >= 1) {
|
|
if (s[0] == 'b' || s[0] == 'B') {
|
|
s++;
|
|
len--;
|
|
}
|
|
else if (len >= 2 && s[0] == '0' && (s[1] == 'b' || s[1] == 'B')) {
|
|
s+=2;
|
|
len-=2;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; len-- && (bit = *s); s++) {
|
|
if (bit == '0' || bit == '1') {
|
|
/* Write it in this wonky order with a goto to attempt to get the
|
|
compiler to make the common case integer-only loop pretty tight.
|
|
With gcc seems to be much straighter code than old scan_bin. */
|
|
redo:
|
|
if (!overflowed) {
|
|
if (value <= max_div_2) {
|
|
value = (value << 1) | (bit - '0');
|
|
continue;
|
|
}
|
|
/* Bah. We're just overflowed. */
|
|
/* diag_listed_as: Integer overflow in %s number */
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
|
|
"Integer overflow in binary number");
|
|
overflowed = TRUE;
|
|
value_nv = (NV) value;
|
|
}
|
|
value_nv *= 2.0;
|
|
/* If an NV has not enough bits in its mantissa to
|
|
* represent a UV this summing of small low-order numbers
|
|
* is a waste of time (because the NV cannot preserve
|
|
* the low-order bits anyway): we could just remember when
|
|
* did we overflow and in the end just multiply value_nv by the
|
|
* right amount. */
|
|
value_nv += (NV)(bit - '0');
|
|
continue;
|
|
}
|
|
if (bit == '_' && len && allow_underscores && (bit = s[1])
|
|
&& (bit == '0' || bit == '1'))
|
|
{
|
|
--len;
|
|
++s;
|
|
goto redo;
|
|
}
|
|
if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
|
|
"Illegal binary digit '%c' ignored", *s);
|
|
break;
|
|
}
|
|
|
|
if ( ( overflowed && value_nv > 4294967295.0)
|
|
#if UVSIZE > 4
|
|
|| (!overflowed && value > 0xffffffff
|
|
&& ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
|
|
#endif
|
|
) {
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
|
|
"Binary number > 0b11111111111111111111111111111111 non-portable");
|
|
}
|
|
*len_p = s - start;
|
|
if (!overflowed) {
|
|
*flags = 0;
|
|
return value;
|
|
}
|
|
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
|
if (result)
|
|
*result = value_nv;
|
|
return UV_MAX;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_hex
|
|
|
|
converts a string representing a hex number to numeric form.
|
|
|
|
On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
|
conversion flags, and I<result> should be NULL or a pointer to an NV.
|
|
The scan stops at the end of the string, or the first invalid character.
|
|
Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
|
|
invalid character will also trigger a warning.
|
|
On return I<*len> is set to the length of the scanned string,
|
|
and I<*flags> gives output flags.
|
|
|
|
If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
|
|
and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
|
|
returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
|
and writes the value to I<*result> (or the value is discarded if I<result>
|
|
is NULL).
|
|
|
|
The hex number may optionally be prefixed with "0x" or "x" unless
|
|
C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
|
|
C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
|
|
number may use '_' characters to separate digits.
|
|
|
|
=cut
|
|
|
|
Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
|
|
which suppresses any message for non-portable numbers that are still valid
|
|
on this platform.
|
|
*/
|
|
|
|
UV
|
|
Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
|
|
{
|
|
dVAR;
|
|
const char *s = start;
|
|
STRLEN len = *len_p;
|
|
UV value = 0;
|
|
NV value_nv = 0;
|
|
const UV max_div_16 = UV_MAX / 16;
|
|
const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
|
bool overflowed = FALSE;
|
|
|
|
PERL_ARGS_ASSERT_GROK_HEX;
|
|
|
|
if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
|
/* strip off leading x or 0x.
|
|
for compatibility silently suffer "x" and "0x" as valid hex numbers.
|
|
*/
|
|
if (len >= 1) {
|
|
if (s[0] == 'x' || s[0] == 'X') {
|
|
s++;
|
|
len--;
|
|
}
|
|
else if (len >= 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
|
|
s+=2;
|
|
len-=2;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; len-- && *s; s++) {
|
|
const char *hexdigit = strchr(PL_hexdigit, *s);
|
|
if (hexdigit) {
|
|
/* Write it in this wonky order with a goto to attempt to get the
|
|
compiler to make the common case integer-only loop pretty tight.
|
|
With gcc seems to be much straighter code than old scan_hex. */
|
|
redo:
|
|
if (!overflowed) {
|
|
if (value <= max_div_16) {
|
|
value = (value << 4) | ((hexdigit - PL_hexdigit) & 15);
|
|
continue;
|
|
}
|
|
/* Bah. We're just overflowed. */
|
|
/* diag_listed_as: Integer overflow in %s number */
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
|
|
"Integer overflow in hexadecimal number");
|
|
overflowed = TRUE;
|
|
value_nv = (NV) value;
|
|
}
|
|
value_nv *= 16.0;
|
|
/* If an NV has not enough bits in its mantissa to
|
|
* represent a UV this summing of small low-order numbers
|
|
* is a waste of time (because the NV cannot preserve
|
|
* the low-order bits anyway): we could just remember when
|
|
* did we overflow and in the end just multiply value_nv by the
|
|
* right amount of 16-tuples. */
|
|
value_nv += (NV)((hexdigit - PL_hexdigit) & 15);
|
|
continue;
|
|
}
|
|
if (*s == '_' && len && allow_underscores && s[1]
|
|
&& (hexdigit = strchr(PL_hexdigit, s[1])))
|
|
{
|
|
--len;
|
|
++s;
|
|
goto redo;
|
|
}
|
|
if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
|
|
"Illegal hexadecimal digit '%c' ignored", *s);
|
|
break;
|
|
}
|
|
|
|
if ( ( overflowed && value_nv > 4294967295.0)
|
|
#if UVSIZE > 4
|
|
|| (!overflowed && value > 0xffffffff
|
|
&& ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
|
|
#endif
|
|
) {
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
|
|
"Hexadecimal number > 0xffffffff non-portable");
|
|
}
|
|
*len_p = s - start;
|
|
if (!overflowed) {
|
|
*flags = 0;
|
|
return value;
|
|
}
|
|
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
|
if (result)
|
|
*result = value_nv;
|
|
return UV_MAX;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_oct
|
|
|
|
converts a string representing an octal number to numeric form.
|
|
|
|
On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
|
conversion flags, and I<result> should be NULL or a pointer to an NV.
|
|
The scan stops at the end of the string, or the first invalid character.
|
|
Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
|
|
8 or 9 will also trigger a warning.
|
|
On return I<*len> is set to the length of the scanned string,
|
|
and I<*flags> gives output flags.
|
|
|
|
If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
|
|
and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct>
|
|
returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
|
and writes the value to I<*result> (or the value is discarded if I<result>
|
|
is NULL).
|
|
|
|
If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal
|
|
number may use '_' characters to separate digits.
|
|
|
|
=cut
|
|
|
|
Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
|
|
which suppresses any message for non-portable numbers that are still valid
|
|
on this platform.
|
|
*/
|
|
|
|
UV
|
|
Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
|
|
{
|
|
const char *s = start;
|
|
STRLEN len = *len_p;
|
|
UV value = 0;
|
|
NV value_nv = 0;
|
|
const UV max_div_8 = UV_MAX / 8;
|
|
const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
|
bool overflowed = FALSE;
|
|
|
|
PERL_ARGS_ASSERT_GROK_OCT;
|
|
|
|
for (; len-- && *s; s++) {
|
|
/* gcc 2.95 optimiser not smart enough to figure that this subtraction
|
|
out front allows slicker code. */
|
|
int digit = *s - '0';
|
|
if (digit >= 0 && digit <= 7) {
|
|
/* Write it in this wonky order with a goto to attempt to get the
|
|
compiler to make the common case integer-only loop pretty tight.
|
|
*/
|
|
redo:
|
|
if (!overflowed) {
|
|
if (value <= max_div_8) {
|
|
value = (value << 3) | digit;
|
|
continue;
|
|
}
|
|
/* Bah. We're just overflowed. */
|
|
/* diag_listed_as: Integer overflow in %s number */
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
|
|
"Integer overflow in octal number");
|
|
overflowed = TRUE;
|
|
value_nv = (NV) value;
|
|
}
|
|
value_nv *= 8.0;
|
|
/* If an NV has not enough bits in its mantissa to
|
|
* represent a UV this summing of small low-order numbers
|
|
* is a waste of time (because the NV cannot preserve
|
|
* the low-order bits anyway): we could just remember when
|
|
* did we overflow and in the end just multiply value_nv by the
|
|
* right amount of 8-tuples. */
|
|
value_nv += (NV)digit;
|
|
continue;
|
|
}
|
|
if (digit == ('_' - '0') && len && allow_underscores
|
|
&& (digit = s[1] - '0') && (digit >= 0 && digit <= 7))
|
|
{
|
|
--len;
|
|
++s;
|
|
goto redo;
|
|
}
|
|
/* Allow \octal to work the DWIM way (that is, stop scanning
|
|
* as soon as non-octal characters are seen, complain only if
|
|
* someone seems to want to use the digits eight and nine). */
|
|
if (digit == 8 || digit == 9) {
|
|
if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
|
|
"Illegal octal digit '%c' ignored", *s);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if ( ( overflowed && value_nv > 4294967295.0)
|
|
#if UVSIZE > 4
|
|
|| (!overflowed && value > 0xffffffff
|
|
&& ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
|
|
#endif
|
|
) {
|
|
Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
|
|
"Octal number > 037777777777 non-portable");
|
|
}
|
|
*len_p = s - start;
|
|
if (!overflowed) {
|
|
*flags = 0;
|
|
return value;
|
|
}
|
|
*flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
|
if (result)
|
|
*result = value_nv;
|
|
return UV_MAX;
|
|
}
|
|
|
|
/*
|
|
=for apidoc scan_bin
|
|
|
|
For backwards compatibility. Use C<grok_bin> instead.
|
|
|
|
=for apidoc scan_hex
|
|
|
|
For backwards compatibility. Use C<grok_hex> instead.
|
|
|
|
=for apidoc scan_oct
|
|
|
|
For backwards compatibility. Use C<grok_oct> instead.
|
|
|
|
=cut
|
|
*/
|
|
|
|
NV
|
|
Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
|
|
{
|
|
NV rnv;
|
|
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
|
const UV ruv = grok_bin (start, &len, &flags, &rnv);
|
|
|
|
PERL_ARGS_ASSERT_SCAN_BIN;
|
|
|
|
*retlen = len;
|
|
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
|
}
|
|
|
|
NV
|
|
Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
|
|
{
|
|
NV rnv;
|
|
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
|
const UV ruv = grok_oct (start, &len, &flags, &rnv);
|
|
|
|
PERL_ARGS_ASSERT_SCAN_OCT;
|
|
|
|
*retlen = len;
|
|
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
|
}
|
|
|
|
NV
|
|
Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
|
|
{
|
|
NV rnv;
|
|
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
|
const UV ruv = grok_hex (start, &len, &flags, &rnv);
|
|
|
|
PERL_ARGS_ASSERT_SCAN_HEX;
|
|
|
|
*retlen = len;
|
|
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_numeric_radix
|
|
|
|
Scan and skip for a numeric decimal separator (radix).
|
|
|
|
=cut
|
|
*/
|
|
bool
|
|
Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
|
|
{
|
|
#ifdef USE_LOCALE_NUMERIC
|
|
dVAR;
|
|
|
|
PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
|
|
|
|
if (PL_numeric_radix_sv && IN_LOCALE) {
|
|
STRLEN len;
|
|
const char * const radix = SvPV(PL_numeric_radix_sv, len);
|
|
if (*sp + len <= send && memEQ(*sp, radix, len)) {
|
|
*sp += len;
|
|
return TRUE;
|
|
}
|
|
}
|
|
/* always try "." if numeric radix didn't match because
|
|
* we may have data from different locales mixed */
|
|
#endif
|
|
|
|
PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
|
|
|
|
if (*sp < send && **sp == '.') {
|
|
++*sp;
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
=for apidoc grok_number
|
|
|
|
Recognise (or not) a number. The type of the number is returned
|
|
(0 if unrecognised), otherwise it is a bit-ORed combination of
|
|
IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
|
|
IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
|
|
|
|
If the value of the number can fit an in UV, it is returned in the *valuep
|
|
IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
|
|
will never be set unless *valuep is valid, but *valuep may have been assigned
|
|
to during processing even though IS_NUMBER_IN_UV is not set on return.
|
|
If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
|
|
valuep is non-NULL, but no actual assignment (or SEGV) will occur.
|
|
|
|
IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
|
|
seen (in which case *valuep gives the true value truncated to an integer), and
|
|
IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
|
|
absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
|
|
number is larger than a UV.
|
|
|
|
=cut
|
|
*/
|
|
int
|
|
Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
|
|
{
|
|
const char *s = pv;
|
|
const char * const send = pv + len;
|
|
const UV max_div_10 = UV_MAX / 10;
|
|
const char max_mod_10 = UV_MAX % 10;
|
|
int numtype = 0;
|
|
int sawinf = 0;
|
|
int sawnan = 0;
|
|
|
|
PERL_ARGS_ASSERT_GROK_NUMBER;
|
|
|
|
while (s < send && isSPACE(*s))
|
|
s++;
|
|
if (s == send) {
|
|
return 0;
|
|
} else if (*s == '-') {
|
|
s++;
|
|
numtype = IS_NUMBER_NEG;
|
|
}
|
|
else if (*s == '+')
|
|
s++;
|
|
|
|
if (s == send)
|
|
return 0;
|
|
|
|
/* next must be digit or the radix separator or beginning of infinity */
|
|
if (isDIGIT(*s)) {
|
|
/* UVs are at least 32 bits, so the first 9 decimal digits cannot
|
|
overflow. */
|
|
UV value = *s - '0';
|
|
/* This construction seems to be more optimiser friendly.
|
|
(without it gcc does the isDIGIT test and the *s - '0' separately)
|
|
With it gcc on arm is managing 6 instructions (6 cycles) per digit.
|
|
In theory the optimiser could deduce how far to unroll the loop
|
|
before checking for overflow. */
|
|
if (++s < send) {
|
|
int digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
digit = *s - '0';
|
|
if (digit >= 0 && digit <= 9) {
|
|
value = value * 10 + digit;
|
|
if (++s < send) {
|
|
/* Now got 9 digits, so need to check
|
|
each time for overflow. */
|
|
digit = *s - '0';
|
|
while (digit >= 0 && digit <= 9
|
|
&& (value < max_div_10
|
|
|| (value == max_div_10
|
|
&& digit <= max_mod_10))) {
|
|
value = value * 10 + digit;
|
|
if (++s < send)
|
|
digit = *s - '0';
|
|
else
|
|
break;
|
|
}
|
|
if (digit >= 0 && digit <= 9
|
|
&& (s < send)) {
|
|
/* value overflowed.
|
|
skip the remaining digits, don't
|
|
worry about setting *valuep. */
|
|
do {
|
|
s++;
|
|
} while (s < send && isDIGIT(*s));
|
|
numtype |=
|
|
IS_NUMBER_GREATER_THAN_UV_MAX;
|
|
goto skip_value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
numtype |= IS_NUMBER_IN_UV;
|
|
if (valuep)
|
|
*valuep = value;
|
|
|
|
skip_value:
|
|
if (GROK_NUMERIC_RADIX(&s, send)) {
|
|
numtype |= IS_NUMBER_NOT_INT;
|
|
while (s < send && isDIGIT(*s)) /* optional digits after the radix */
|
|
s++;
|
|
}
|
|
}
|
|
else if (GROK_NUMERIC_RADIX(&s, send)) {
|
|
numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
|
|
/* no digits before the radix means we need digits after it */
|
|
if (s < send && isDIGIT(*s)) {
|
|
do {
|
|
s++;
|
|
} while (s < send && isDIGIT(*s));
|
|
if (valuep) {
|
|
/* integer approximation is valid - it's 0. */
|
|
*valuep = 0;
|
|
}
|
|
}
|
|
else
|
|
return 0;
|
|
} else if (*s == 'I' || *s == 'i') {
|
|
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
|
s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
|
|
s++; if (s < send && (*s == 'I' || *s == 'i')) {
|
|
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
|
s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
|
|
s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
|
|
s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
|
|
s++;
|
|
}
|
|
sawinf = 1;
|
|
} else if (*s == 'N' || *s == 'n') {
|
|
/* XXX TODO: There are signaling NaNs and quiet NaNs. */
|
|
s++; if (s == send || (*s != 'A' && *s != 'a')) return 0;
|
|
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
|
s++;
|
|
sawnan = 1;
|
|
} else
|
|
return 0;
|
|
|
|
if (sawinf) {
|
|
numtype &= IS_NUMBER_NEG; /* Keep track of sign */
|
|
numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
|
|
} else if (sawnan) {
|
|
numtype &= IS_NUMBER_NEG; /* Keep track of sign */
|
|
numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
|
|
} else if (s < send) {
|
|
/* we can have an optional exponent part */
|
|
if (*s == 'e' || *s == 'E') {
|
|
/* The only flag we keep is sign. Blow away any "it's UV" */
|
|
numtype &= IS_NUMBER_NEG;
|
|
numtype |= IS_NUMBER_NOT_INT;
|
|
s++;
|
|
if (s < send && (*s == '-' || *s == '+'))
|
|
s++;
|
|
if (s < send && isDIGIT(*s)) {
|
|
do {
|
|
s++;
|
|
} while (s < send && isDIGIT(*s));
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
while (s < send && isSPACE(*s))
|
|
s++;
|
|
if (s >= send)
|
|
return numtype;
|
|
if (len == 10 && memEQ(pv, "0 but true", 10)) {
|
|
if (valuep)
|
|
*valuep = 0;
|
|
return IS_NUMBER_IN_UV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
STATIC NV
|
|
S_mulexp10(NV value, I32 exponent)
|
|
{
|
|
NV result = 1.0;
|
|
NV power = 10.0;
|
|
bool negative = 0;
|
|
I32 bit;
|
|
|
|
if (exponent == 0)
|
|
return value;
|
|
if (value == 0)
|
|
return (NV)0;
|
|
|
|
/* On OpenVMS VAX we by default use the D_FLOAT double format,
|
|
* and that format does not have *easy* capabilities [1] for
|
|
* overflowing doubles 'silently' as IEEE fp does. We also need
|
|
* to support G_FLOAT on both VAX and Alpha, and though the exponent
|
|
* range is much larger than D_FLOAT it still doesn't do silent
|
|
* overflow. Therefore we need to detect early whether we would
|
|
* overflow (this is the behaviour of the native string-to-float
|
|
* conversion routines, and therefore of native applications, too).
|
|
*
|
|
* [1] Trying to establish a condition handler to trap floating point
|
|
* exceptions is not a good idea. */
|
|
|
|
/* In UNICOS and in certain Cray models (such as T90) there is no
|
|
* IEEE fp, and no way at all from C to catch fp overflows gracefully.
|
|
* There is something you can do if you are willing to use some
|
|
* inline assembler: the instruction is called DFI-- but that will
|
|
* disable *all* floating point interrupts, a little bit too large
|
|
* a hammer. Therefore we need to catch potential overflows before
|
|
* it's too late. */
|
|
|
|
#if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
|
|
STMT_START {
|
|
const NV exp_v = log10(value);
|
|
if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
|
|
return NV_MAX;
|
|
if (exponent < 0) {
|
|
if (-(exponent + exp_v) >= NV_MAX_10_EXP)
|
|
return 0.0;
|
|
while (-exponent >= NV_MAX_10_EXP) {
|
|
/* combination does not overflow, but 10^(-exponent) does */
|
|
value /= 10;
|
|
++exponent;
|
|
}
|
|
}
|
|
} STMT_END;
|
|
#endif
|
|
|
|
if (exponent < 0) {
|
|
negative = 1;
|
|
exponent = -exponent;
|
|
}
|
|
for (bit = 1; exponent; bit <<= 1) {
|
|
if (exponent & bit) {
|
|
exponent ^= bit;
|
|
result *= power;
|
|
/* Floating point exceptions are supposed to be turned off,
|
|
* but if we're obviously done, don't risk another iteration.
|
|
*/
|
|
if (exponent == 0) break;
|
|
}
|
|
power *= power;
|
|
}
|
|
return negative ? value / result : value * result;
|
|
}
|
|
|
|
NV
|
|
Perl_my_atof(pTHX_ const char* s)
|
|
{
|
|
NV x = 0.0;
|
|
#ifdef USE_LOCALE_NUMERIC
|
|
dVAR;
|
|
|
|
PERL_ARGS_ASSERT_MY_ATOF;
|
|
|
|
if (PL_numeric_local && IN_LOCALE) {
|
|
NV y;
|
|
|
|
/* Scan the number twice; once using locale and once without;
|
|
* choose the larger result (in absolute value). */
|
|
Perl_atof2(s, x);
|
|
SET_NUMERIC_STANDARD();
|
|
Perl_atof2(s, y);
|
|
SET_NUMERIC_LOCAL();
|
|
if ((y < 0.0 && y < x) || (y > 0.0 && y > x))
|
|
return y;
|
|
}
|
|
else
|
|
Perl_atof2(s, x);
|
|
#else
|
|
Perl_atof2(s, x);
|
|
#endif
|
|
return x;
|
|
}
|
|
|
|
char*
|
|
Perl_my_atof2(pTHX_ const char* orig, NV* value)
|
|
{
|
|
NV result[3] = {0.0, 0.0, 0.0};
|
|
const char* s = orig;
|
|
#ifdef USE_PERL_ATOF
|
|
UV accumulator[2] = {0,0}; /* before/after dp */
|
|
bool negative = 0;
|
|
const char* send = s + strlen(orig) - 1;
|
|
bool seen_digit = 0;
|
|
I32 exp_adjust[2] = {0,0};
|
|
I32 exp_acc[2] = {-1, -1};
|
|
/* the current exponent adjust for the accumulators */
|
|
I32 exponent = 0;
|
|
I32 seen_dp = 0;
|
|
I32 digit = 0;
|
|
I32 old_digit = 0;
|
|
I32 sig_digits = 0; /* noof significant digits seen so far */
|
|
|
|
PERL_ARGS_ASSERT_MY_ATOF2;
|
|
|
|
/* There is no point in processing more significant digits
|
|
* than the NV can hold. Note that NV_DIG is a lower-bound value,
|
|
* while we need an upper-bound value. We add 2 to account for this;
|
|
* since it will have been conservative on both the first and last digit.
|
|
* For example a 32-bit mantissa with an exponent of 4 would have
|
|
* exact values in the set
|
|
* 4
|
|
* 8
|
|
* ..
|
|
* 17179869172
|
|
* 17179869176
|
|
* 17179869180
|
|
*
|
|
* where for the purposes of calculating NV_DIG we would have to discount
|
|
* both the first and last digit, since neither can hold all values from
|
|
* 0..9; but for calculating the value we must examine those two digits.
|
|
*/
|
|
#ifdef MAX_SIG_DIG_PLUS
|
|
/* It is not necessarily the case that adding 2 to NV_DIG gets all the
|
|
possible digits in a NV, especially if NVs are not IEEE compliant
|
|
(e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
|
|
# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
|
|
#else
|
|
# define MAX_SIG_DIGITS (NV_DIG+2)
|
|
#endif
|
|
|
|
/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
|
|
#define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
|
|
|
|
/* leading whitespace */
|
|
while (isSPACE(*s))
|
|
++s;
|
|
|
|
/* sign */
|
|
switch (*s) {
|
|
case '-':
|
|
negative = 1;
|
|
/* fall through */
|
|
case '+':
|
|
++s;
|
|
}
|
|
|
|
/* punt to strtod for NaN/Inf; if no support for it there, tough luck */
|
|
|
|
#ifdef HAS_STRTOD
|
|
if (*s == 'n' || *s == 'N' || *s == 'i' || *s == 'I') {
|
|
const char *p = negative ? s - 1 : s;
|
|
char *endp;
|
|
NV rslt;
|
|
rslt = strtod(p, &endp);
|
|
if (endp != p) {
|
|
*value = rslt;
|
|
return (char *)endp;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* we accumulate digits into an integer; when this becomes too
|
|
* large, we add the total to NV and start again */
|
|
|
|
while (1) {
|
|
if (isDIGIT(*s)) {
|
|
seen_digit = 1;
|
|
old_digit = digit;
|
|
digit = *s++ - '0';
|
|
if (seen_dp)
|
|
exp_adjust[1]++;
|
|
|
|
/* don't start counting until we see the first significant
|
|
* digit, eg the 5 in 0.00005... */
|
|
if (!sig_digits && digit == 0)
|
|
continue;
|
|
|
|
if (++sig_digits > MAX_SIG_DIGITS) {
|
|
/* limits of precision reached */
|
|
if (digit > 5) {
|
|
++accumulator[seen_dp];
|
|
} else if (digit == 5) {
|
|
if (old_digit % 2) { /* round to even - Allen */
|
|
++accumulator[seen_dp];
|
|
}
|
|
}
|
|
if (seen_dp) {
|
|
exp_adjust[1]--;
|
|
} else {
|
|
exp_adjust[0]++;
|
|
}
|
|
/* skip remaining digits */
|
|
while (isDIGIT(*s)) {
|
|
++s;
|
|
if (! seen_dp) {
|
|
exp_adjust[0]++;
|
|
}
|
|
}
|
|
/* warn of loss of precision? */
|
|
}
|
|
else {
|
|
if (accumulator[seen_dp] > MAX_ACCUMULATE) {
|
|
/* add accumulator to result and start again */
|
|
result[seen_dp] = S_mulexp10(result[seen_dp],
|
|
exp_acc[seen_dp])
|
|
+ (NV)accumulator[seen_dp];
|
|
accumulator[seen_dp] = 0;
|
|
exp_acc[seen_dp] = 0;
|
|
}
|
|
accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
|
|
++exp_acc[seen_dp];
|
|
}
|
|
}
|
|
else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
|
|
seen_dp = 1;
|
|
if (sig_digits > MAX_SIG_DIGITS) {
|
|
do {
|
|
++s;
|
|
} while (isDIGIT(*s));
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
|
|
if (seen_dp) {
|
|
result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
|
|
}
|
|
|
|
if (seen_digit && (*s == 'e' || *s == 'E')) {
|
|
bool expnegative = 0;
|
|
|
|
++s;
|
|
switch (*s) {
|
|
case '-':
|
|
expnegative = 1;
|
|
/* fall through */
|
|
case '+':
|
|
++s;
|
|
}
|
|
while (isDIGIT(*s))
|
|
exponent = exponent * 10 + (*s++ - '0');
|
|
if (expnegative)
|
|
exponent = -exponent;
|
|
}
|
|
|
|
|
|
|
|
/* now apply the exponent */
|
|
|
|
if (seen_dp) {
|
|
result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
|
|
+ S_mulexp10(result[1],exponent-exp_adjust[1]);
|
|
} else {
|
|
result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
|
|
}
|
|
|
|
/* now apply the sign */
|
|
if (negative)
|
|
result[2] = -result[2];
|
|
#endif /* USE_PERL_ATOF */
|
|
*value = result[2];
|
|
return (char *)s;
|
|
}
|
|
|
|
#if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
|
|
long double
|
|
Perl_my_modfl(long double x, long double *ip)
|
|
{
|
|
*ip = aintl(x);
|
|
return (x == *ip ? copysignl(0.0L, x) : x - *ip);
|
|
}
|
|
#endif
|
|
|
|
#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
|
|
long double
|
|
Perl_my_frexpl(long double x, int *e) {
|
|
*e = x == 0.0L ? 0 : ilogbl(x) + 1;
|
|
return (scalbnl(x, -*e));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
=for apidoc Perl_signbit
|
|
|
|
Return a non-zero integer if the sign bit on an NV is set, and 0 if
|
|
it is not.
|
|
|
|
If Configure detects this system has a signbit() that will work with
|
|
our NVs, then we just use it via the #define in perl.h. Otherwise,
|
|
fall back on this implementation. As a first pass, this gets everything
|
|
right except -0.0. Alas, catching -0.0 is the main use for this function,
|
|
so this is not too helpful yet. Still, at least we have the scaffolding
|
|
in place to support other systems, should that prove useful.
|
|
|
|
|
|
Configure notes: This function is called 'Perl_signbit' instead of a
|
|
plain 'signbit' because it is easy to imagine a system having a signbit()
|
|
function or macro that doesn't happen to work with our particular choice
|
|
of NVs. We shouldn't just re-#define signbit as Perl_signbit and expect
|
|
the standard system headers to be happy. Also, this is a no-context
|
|
function (no pTHX_) because Perl_signbit() is usually re-#defined in
|
|
perl.h as a simple macro call to the system's signbit().
|
|
Users should just always call Perl_signbit().
|
|
|
|
=cut
|
|
*/
|
|
#if !defined(HAS_SIGNBIT)
|
|
int
|
|
Perl_signbit(NV x) {
|
|
return (x < 0.0) ? 1 : 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indentation-style: bsd
|
|
* c-basic-offset: 4
|
|
* indent-tabs-mode: t
|
|
* End:
|
|
*
|
|
* ex: set ts=8 sts=4 sw=4 noet:
|
|
*/
|