mirror of
https://github.com/Perl/perl5.git
synced 2026-01-26 08:38:23 +00:00
Don't decrement the reference count of the element about to be stored into. Likely, this is an error in the caller, but doing this action blindly is like shooting yourself in the foot. The branch prediction also added ensures this shouldn't slow things down. See http://nntp.perl.org/group/perl.perl5.porters/254974
1081 lines
25 KiB
C
1081 lines
25 KiB
C
/* av.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
|
* 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
|
|
*
|
|
* You may distribute under the terms of either the GNU General Public
|
|
* License or the Artistic License, as specified in the README file.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* '...for the Entwives desired order, and plenty, and peace (by which they
|
|
* meant that things should remain where they had set them).' --Treebeard
|
|
*
|
|
* [p.476 of _The Lord of the Rings_, III/iv: "Treebeard"]
|
|
*/
|
|
|
|
/*
|
|
=head1 Array Manipulation Functions
|
|
*/
|
|
|
|
#include "EXTERN.h"
|
|
#define PERL_IN_AV_C
|
|
#include "perl.h"
|
|
|
|
void
|
|
Perl_av_reify(pTHX_ AV *av)
|
|
{
|
|
SSize_t key;
|
|
|
|
PERL_ARGS_ASSERT_AV_REIFY;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (AvREAL(av))
|
|
return;
|
|
#ifdef DEBUGGING
|
|
if (SvTIED_mg((const SV *)av, PERL_MAGIC_tied))
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING), "av_reify called on tied array");
|
|
#endif
|
|
key = AvMAX(av) + 1;
|
|
while (key > AvFILLp(av) + 1)
|
|
AvARRAY(av)[--key] = NULL;
|
|
while (key) {
|
|
SV * const sv = AvARRAY(av)[--key];
|
|
if (sv != &PL_sv_undef)
|
|
SvREFCNT_inc_simple_void(sv);
|
|
}
|
|
key = AvARRAY(av) - AvALLOC(av);
|
|
while (key)
|
|
AvALLOC(av)[--key] = NULL;
|
|
AvREIFY_off(av);
|
|
AvREAL_on(av);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_extend
|
|
|
|
Pre-extend an array. The C<key> is the index to which the array should be
|
|
extended.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_extend(pTHX_ AV *av, SSize_t key)
|
|
{
|
|
MAGIC *mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_EXTEND;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied);
|
|
if (mg) {
|
|
SV *arg1 = sv_newmortal();
|
|
sv_setiv(arg1, (IV)(key + 1));
|
|
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(EXTEND), G_DISCARD, 1,
|
|
arg1);
|
|
return;
|
|
}
|
|
av_extend_guts(av,key,&AvMAX(av),&AvALLOC(av),&AvARRAY(av));
|
|
}
|
|
|
|
/* The guts of av_extend. *Not* for general use! */
|
|
void
|
|
Perl_av_extend_guts(pTHX_ AV *av, SSize_t key, SSize_t *maxp, SV ***allocp,
|
|
SV ***arrayp)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_EXTEND_GUTS;
|
|
|
|
if (key < -1) /* -1 is legal */
|
|
Perl_croak(aTHX_
|
|
"panic: av_extend_guts() negative count (%" IVdf ")", (IV)key);
|
|
|
|
if (key > *maxp) {
|
|
SV** ary;
|
|
SSize_t tmp;
|
|
SSize_t newmax;
|
|
|
|
if (av && *allocp != *arrayp) {
|
|
ary = *allocp + AvFILLp(av) + 1;
|
|
tmp = *arrayp - *allocp;
|
|
Move(*arrayp, *allocp, AvFILLp(av)+1, SV*);
|
|
*maxp += tmp;
|
|
*arrayp = *allocp;
|
|
if (AvREAL(av)) {
|
|
while (tmp)
|
|
ary[--tmp] = NULL;
|
|
}
|
|
if (key > *maxp - 10) {
|
|
newmax = key + *maxp;
|
|
goto resize;
|
|
}
|
|
}
|
|
else {
|
|
if (*allocp) {
|
|
|
|
#ifdef Perl_safesysmalloc_size
|
|
/* Whilst it would be quite possible to move this logic around
|
|
(as I did in the SV code), so as to set AvMAX(av) early,
|
|
based on calling Perl_safesysmalloc_size() immediately after
|
|
allocation, I'm not convinced that it is a great idea here.
|
|
In an array we have to loop round setting everything to
|
|
NULL, which means writing to memory, potentially lots
|
|
of it, whereas for the SV buffer case we don't touch the
|
|
"bonus" memory. So there there is no cost in telling the
|
|
world about it, whereas here we have to do work before we can
|
|
tell the world about it, and that work involves writing to
|
|
memory that might never be read. So, I feel, better to keep
|
|
the current lazy system of only writing to it if our caller
|
|
has a need for more space. NWC */
|
|
newmax = Perl_safesysmalloc_size((void*)*allocp) /
|
|
sizeof(const SV *) - 1;
|
|
|
|
if (key <= newmax)
|
|
goto resized;
|
|
#endif
|
|
/* overflow-safe version of newmax = key + *maxp/5 */
|
|
newmax = *maxp / 5;
|
|
newmax = (key > SSize_t_MAX - newmax)
|
|
? SSize_t_MAX : key + newmax;
|
|
resize:
|
|
{
|
|
/* it should really be newmax+1 here, but if newmax
|
|
* happens to equal SSize_t_MAX, then newmax+1 is
|
|
* undefined. This means technically we croak one
|
|
* index lower than we should in theory; in practice
|
|
* its unlikely the system has SSize_t_MAX/sizeof(SV*)
|
|
* bytes to spare! */
|
|
MEM_WRAP_CHECK_s(newmax, SV*, "Out of memory during array extend");
|
|
}
|
|
#ifdef STRESS_REALLOC
|
|
{
|
|
SV ** const old_alloc = *allocp;
|
|
Newx(*allocp, newmax+1, SV*);
|
|
Copy(old_alloc, *allocp, *maxp + 1, SV*);
|
|
Safefree(old_alloc);
|
|
}
|
|
#else
|
|
Renew(*allocp,newmax+1, SV*);
|
|
#endif
|
|
#ifdef Perl_safesysmalloc_size
|
|
resized:
|
|
#endif
|
|
ary = *allocp + *maxp + 1;
|
|
tmp = newmax - *maxp;
|
|
if (av == PL_curstack) { /* Oops, grew stack (via av_store()?) */
|
|
PL_stack_sp = *allocp + (PL_stack_sp - PL_stack_base);
|
|
PL_stack_base = *allocp;
|
|
PL_stack_max = PL_stack_base + newmax;
|
|
}
|
|
}
|
|
else {
|
|
newmax = key < 3 ? 3 : key;
|
|
{
|
|
/* see comment above about newmax+1*/
|
|
MEM_WRAP_CHECK_s(newmax, SV*, "Out of memory during array extend");
|
|
}
|
|
Newx(*allocp, newmax+1, SV*);
|
|
ary = *allocp + 1;
|
|
tmp = newmax;
|
|
*allocp[0] = NULL; /* For the stacks */
|
|
}
|
|
if (av && AvREAL(av)) {
|
|
while (tmp)
|
|
ary[--tmp] = NULL;
|
|
}
|
|
|
|
*arrayp = *allocp;
|
|
*maxp = newmax;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_fetch
|
|
|
|
Returns the SV at the specified index in the array. The C<key> is the
|
|
index. If lval is true, you are guaranteed to get a real SV back (in case
|
|
it wasn't real before), which you can then modify. Check that the return
|
|
value is non-null before dereferencing it to a C<SV*>.
|
|
|
|
See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for
|
|
more information on how to use this function on tied arrays.
|
|
|
|
The rough perl equivalent is C<$myarray[$key]>.
|
|
|
|
=cut
|
|
*/
|
|
|
|
static bool
|
|
S_adjust_index(pTHX_ AV *av, const MAGIC *mg, SSize_t *keyp)
|
|
{
|
|
bool adjust_index = 1;
|
|
if (mg) {
|
|
/* Handle negative array indices 20020222 MJD */
|
|
SV * const ref = SvTIED_obj(MUTABLE_SV(av), mg);
|
|
SvGETMAGIC(ref);
|
|
if (SvROK(ref) && SvOBJECT(SvRV(ref))) {
|
|
SV * const * const negative_indices_glob =
|
|
hv_fetchs(SvSTASH(SvRV(ref)), NEGATIVE_INDICES_VAR, 0);
|
|
|
|
if (negative_indices_glob && isGV(*negative_indices_glob)
|
|
&& SvTRUE(GvSV(*negative_indices_glob)))
|
|
adjust_index = 0;
|
|
}
|
|
}
|
|
|
|
if (adjust_index) {
|
|
*keyp += AvFILL(av) + 1;
|
|
if (*keyp < 0)
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
SV**
|
|
Perl_av_fetch(pTHX_ AV *av, SSize_t key, I32 lval)
|
|
{
|
|
SSize_t neg;
|
|
SSize_t size;
|
|
|
|
PERL_ARGS_ASSERT_AV_FETCH;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (UNLIKELY(SvRMAGICAL(av))) {
|
|
const MAGIC * const tied_magic
|
|
= mg_find((const SV *)av, PERL_MAGIC_tied);
|
|
if (tied_magic || mg_find((const SV *)av, PERL_MAGIC_regdata)) {
|
|
SV *sv;
|
|
if (key < 0) {
|
|
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
|
|
return NULL;
|
|
}
|
|
|
|
sv = sv_newmortal();
|
|
sv_upgrade(sv, SVt_PVLV);
|
|
mg_copy(MUTABLE_SV(av), sv, 0, key);
|
|
if (!tied_magic) /* for regdata, force leavesub to make copies */
|
|
SvTEMP_off(sv);
|
|
LvTYPE(sv) = 't';
|
|
LvTARG(sv) = sv; /* fake (SV**) */
|
|
return &(LvTARG(sv));
|
|
}
|
|
}
|
|
|
|
neg = (key < 0);
|
|
size = AvFILLp(av) + 1;
|
|
key += neg * size; /* handle negative index without using branch */
|
|
|
|
/* the cast from SSize_t to Size_t allows both (key < 0) and (key >= size)
|
|
* to be tested as a single condition */
|
|
if ((Size_t)key >= (Size_t)size) {
|
|
if (UNLIKELY(neg))
|
|
return NULL;
|
|
goto emptyness;
|
|
}
|
|
|
|
if (!AvARRAY(av)[key]) {
|
|
emptyness:
|
|
return lval ? av_store(av,key,newSV(0)) : NULL;
|
|
}
|
|
|
|
return &AvARRAY(av)[key];
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_store
|
|
|
|
Stores an SV in an array. The array index is specified as C<key>. The
|
|
return value will be C<NULL> if the operation failed or if the value did not
|
|
need to be actually stored within the array (as in the case of tied
|
|
arrays). Otherwise, it can be dereferenced
|
|
to get the C<SV*> that was stored
|
|
there (= C<val>)).
|
|
|
|
Note that the caller is responsible for suitably incrementing the reference
|
|
count of C<val> before the call, and decrementing it if the function
|
|
returned C<NULL>.
|
|
|
|
Approximate Perl equivalent: C<splice(@myarray, $key, 1, $val)>.
|
|
|
|
See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for
|
|
more information on how to use this function on tied arrays.
|
|
|
|
=cut
|
|
*/
|
|
|
|
SV**
|
|
Perl_av_store(pTHX_ AV *av, SSize_t key, SV *val)
|
|
{
|
|
SV** ary;
|
|
|
|
PERL_ARGS_ASSERT_AV_STORE;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
/* S_regclass relies on being able to pass in a NULL sv
|
|
(unicode_alternate may be NULL).
|
|
*/
|
|
|
|
if (SvRMAGICAL(av)) {
|
|
const MAGIC * const tied_magic = mg_find((const SV *)av, PERL_MAGIC_tied);
|
|
if (tied_magic) {
|
|
if (key < 0) {
|
|
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
|
|
return 0;
|
|
}
|
|
if (val) {
|
|
mg_copy(MUTABLE_SV(av), val, 0, key);
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
if (key < 0) {
|
|
key += AvFILL(av) + 1;
|
|
if (key < 0)
|
|
return NULL;
|
|
}
|
|
|
|
if (SvREADONLY(av) && key >= AvFILL(av))
|
|
Perl_croak_no_modify();
|
|
|
|
if (!AvREAL(av) && AvREIFY(av))
|
|
av_reify(av);
|
|
if (key > AvMAX(av))
|
|
av_extend(av,key);
|
|
ary = AvARRAY(av);
|
|
if (AvFILLp(av) < key) {
|
|
if (!AvREAL(av)) {
|
|
if (av == PL_curstack && key > PL_stack_sp - PL_stack_base)
|
|
PL_stack_sp = PL_stack_base + key; /* XPUSH in disguise */
|
|
do {
|
|
ary[++AvFILLp(av)] = NULL;
|
|
} while (AvFILLp(av) < key);
|
|
}
|
|
AvFILLp(av) = key;
|
|
}
|
|
else if (AvREAL(av) && LIKELY(ary[key] != val))
|
|
SvREFCNT_dec(ary[key]);
|
|
ary[key] = val;
|
|
if (SvSMAGICAL(av)) {
|
|
const MAGIC *mg = SvMAGIC(av);
|
|
bool set = TRUE;
|
|
for (; mg; mg = mg->mg_moremagic) {
|
|
if (!isUPPER(mg->mg_type)) continue;
|
|
if (val) {
|
|
sv_magic(val, MUTABLE_SV(av), toLOWER(mg->mg_type), 0, key);
|
|
}
|
|
if (PL_delaymagic && mg->mg_type == PERL_MAGIC_isa) {
|
|
PL_delaymagic |= DM_ARRAY_ISA;
|
|
set = FALSE;
|
|
}
|
|
}
|
|
if (set)
|
|
mg_set(MUTABLE_SV(av));
|
|
}
|
|
return &ary[key];
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_make
|
|
|
|
Creates a new AV and populates it with a list of SVs. The SVs are copied
|
|
into the array, so they may be freed after the call to C<av_make>. The new AV
|
|
will have a reference count of 1.
|
|
|
|
Perl equivalent: C<my @new_array = ($scalar1, $scalar2, $scalar3...);>
|
|
|
|
=cut
|
|
*/
|
|
|
|
AV *
|
|
Perl_av_make(pTHX_ SSize_t size, SV **strp)
|
|
{
|
|
AV * const av = MUTABLE_AV(newSV_type(SVt_PVAV));
|
|
/* sv_upgrade does AvREAL_only() */
|
|
PERL_ARGS_ASSERT_AV_MAKE;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (size) { /* "defined" was returning undef for size==0 anyway. */
|
|
SV** ary;
|
|
SSize_t i;
|
|
SSize_t orig_ix;
|
|
|
|
Newx(ary,size,SV*);
|
|
AvALLOC(av) = ary;
|
|
AvARRAY(av) = ary;
|
|
AvMAX(av) = size - 1;
|
|
AvFILLp(av) = -1;
|
|
/* avoid av being leaked if croak when calling magic below */
|
|
EXTEND_MORTAL(1);
|
|
PL_tmps_stack[++PL_tmps_ix] = (SV*)av;
|
|
orig_ix = PL_tmps_ix;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
assert (*strp);
|
|
|
|
/* Don't let sv_setsv swipe, since our source array might
|
|
have multiple references to the same temp scalar (e.g.
|
|
from a list slice) */
|
|
|
|
SvGETMAGIC(*strp); /* before newSV, in case it dies */
|
|
AvFILLp(av)++;
|
|
ary[i] = newSV(0);
|
|
sv_setsv_flags(ary[i], *strp,
|
|
SV_DO_COW_SVSETSV|SV_NOSTEAL);
|
|
strp++;
|
|
}
|
|
/* disarm av's leak guard */
|
|
if (LIKELY(PL_tmps_ix == orig_ix))
|
|
PL_tmps_ix--;
|
|
else
|
|
PL_tmps_stack[orig_ix] = &PL_sv_undef;
|
|
}
|
|
return av;
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_clear
|
|
|
|
Frees the all the elements of an array, leaving it empty.
|
|
The XS equivalent of C<@array = ()>. See also L</av_undef>.
|
|
|
|
Note that it is possible that the actions of a destructor called directly
|
|
or indirectly by freeing an element of the array could cause the reference
|
|
count of the array itself to be reduced (e.g. by deleting an entry in the
|
|
symbol table). So it is a possibility that the AV could have been freed
|
|
(or even reallocated) on return from the call unless you hold a reference
|
|
to it.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_clear(pTHX_ AV *av)
|
|
{
|
|
SSize_t extra;
|
|
bool real;
|
|
SSize_t orig_ix = 0;
|
|
|
|
PERL_ARGS_ASSERT_AV_CLEAR;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
#ifdef DEBUGGING
|
|
if (SvREFCNT(av) == 0) {
|
|
Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING), "Attempt to clear deleted array");
|
|
}
|
|
#endif
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
|
|
/* Give any tie a chance to cleanup first */
|
|
if (SvRMAGICAL(av)) {
|
|
const MAGIC* const mg = SvMAGIC(av);
|
|
if (PL_delaymagic && mg && mg->mg_type == PERL_MAGIC_isa)
|
|
PL_delaymagic |= DM_ARRAY_ISA;
|
|
else
|
|
mg_clear(MUTABLE_SV(av));
|
|
}
|
|
|
|
if (AvMAX(av) < 0)
|
|
return;
|
|
|
|
if ((real = cBOOL(AvREAL(av)))) {
|
|
SV** const ary = AvARRAY(av);
|
|
SSize_t index = AvFILLp(av) + 1;
|
|
|
|
/* avoid av being freed when calling destructors below */
|
|
EXTEND_MORTAL(1);
|
|
PL_tmps_stack[++PL_tmps_ix] = SvREFCNT_inc_simple_NN(av);
|
|
orig_ix = PL_tmps_ix;
|
|
|
|
while (index) {
|
|
SV * const sv = ary[--index];
|
|
/* undef the slot before freeing the value, because a
|
|
* destructor might try to modify this array */
|
|
ary[index] = NULL;
|
|
SvREFCNT_dec(sv);
|
|
}
|
|
}
|
|
extra = AvARRAY(av) - AvALLOC(av);
|
|
if (extra) {
|
|
AvMAX(av) += extra;
|
|
AvARRAY(av) = AvALLOC(av);
|
|
}
|
|
AvFILLp(av) = -1;
|
|
if (real) {
|
|
/* disarm av's premature free guard */
|
|
if (LIKELY(PL_tmps_ix == orig_ix))
|
|
PL_tmps_ix--;
|
|
else
|
|
PL_tmps_stack[orig_ix] = &PL_sv_undef;
|
|
SvREFCNT_dec_NN(av);
|
|
}
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_undef
|
|
|
|
Undefines the array. The XS equivalent of C<undef(@array)>.
|
|
|
|
As well as freeing all the elements of the array (like C<av_clear()>), this
|
|
also frees the memory used by the av to store its list of scalars.
|
|
|
|
See L</av_clear> for a note about the array possibly being invalid on
|
|
return.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_undef(pTHX_ AV *av)
|
|
{
|
|
bool real;
|
|
SSize_t orig_ix = PL_tmps_ix; /* silence bogus warning about possible unitialized use */
|
|
|
|
PERL_ARGS_ASSERT_AV_UNDEF;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
/* Give any tie a chance to cleanup first */
|
|
if (SvTIED_mg((const SV *)av, PERL_MAGIC_tied))
|
|
av_fill(av, -1);
|
|
|
|
real = cBOOL(AvREAL(av));
|
|
if (real) {
|
|
SSize_t key = AvFILLp(av) + 1;
|
|
|
|
/* avoid av being freed when calling destructors below */
|
|
EXTEND_MORTAL(1);
|
|
PL_tmps_stack[++PL_tmps_ix] = SvREFCNT_inc_simple_NN(av);
|
|
orig_ix = PL_tmps_ix;
|
|
|
|
while (key)
|
|
SvREFCNT_dec(AvARRAY(av)[--key]);
|
|
}
|
|
|
|
Safefree(AvALLOC(av));
|
|
AvALLOC(av) = NULL;
|
|
AvARRAY(av) = NULL;
|
|
AvMAX(av) = AvFILLp(av) = -1;
|
|
|
|
if(SvRMAGICAL(av)) mg_clear(MUTABLE_SV(av));
|
|
if (real) {
|
|
/* disarm av's premature free guard */
|
|
if (LIKELY(PL_tmps_ix == orig_ix))
|
|
PL_tmps_ix--;
|
|
else
|
|
PL_tmps_stack[orig_ix] = &PL_sv_undef;
|
|
SvREFCNT_dec_NN(av);
|
|
}
|
|
}
|
|
|
|
/*
|
|
|
|
=for apidoc av_create_and_push
|
|
|
|
Push an SV onto the end of the array, creating the array if necessary.
|
|
A small internal helper function to remove a commonly duplicated idiom.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_create_and_push(pTHX_ AV **const avp, SV *const val)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_CREATE_AND_PUSH;
|
|
|
|
if (!*avp)
|
|
*avp = newAV();
|
|
av_push(*avp, val);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_push
|
|
|
|
Pushes an SV (transferring control of one reference count) onto the end of the
|
|
array. The array will grow automatically to accommodate the addition.
|
|
|
|
Perl equivalent: C<push @myarray, $val;>.
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_push(pTHX_ AV *av, SV *val)
|
|
{
|
|
MAGIC *mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_PUSH;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(PUSH), G_DISCARD, 1,
|
|
val);
|
|
return;
|
|
}
|
|
av_store(av,AvFILLp(av)+1,val);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_pop
|
|
|
|
Removes one SV from the end of the array, reducing its size by one and
|
|
returning the SV (transferring control of one reference count) to the
|
|
caller. Returns C<&PL_sv_undef> if the array is empty.
|
|
|
|
Perl equivalent: C<pop(@myarray);>
|
|
|
|
=cut
|
|
*/
|
|
|
|
SV *
|
|
Perl_av_pop(pTHX_ AV *av)
|
|
{
|
|
SV *retval;
|
|
MAGIC* mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_POP;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
retval = Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(POP), 0, 0);
|
|
if (retval)
|
|
retval = newSVsv(retval);
|
|
return retval;
|
|
}
|
|
if (AvFILL(av) < 0)
|
|
return &PL_sv_undef;
|
|
retval = AvARRAY(av)[AvFILLp(av)];
|
|
AvARRAY(av)[AvFILLp(av)--] = NULL;
|
|
if (SvSMAGICAL(av))
|
|
mg_set(MUTABLE_SV(av));
|
|
return retval ? retval : &PL_sv_undef;
|
|
}
|
|
|
|
/*
|
|
|
|
=for apidoc av_create_and_unshift_one
|
|
|
|
Unshifts an SV onto the beginning of the array, creating the array if
|
|
necessary.
|
|
A small internal helper function to remove a commonly duplicated idiom.
|
|
|
|
=cut
|
|
*/
|
|
|
|
SV **
|
|
Perl_av_create_and_unshift_one(pTHX_ AV **const avp, SV *const val)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_CREATE_AND_UNSHIFT_ONE;
|
|
|
|
if (!*avp)
|
|
*avp = newAV();
|
|
av_unshift(*avp, 1);
|
|
return av_store(*avp, 0, val);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_unshift
|
|
|
|
Unshift the given number of C<undef> values onto the beginning of the
|
|
array. The array will grow automatically to accommodate the addition.
|
|
|
|
Perl equivalent: S<C<unshift @myarray, ((undef) x $num);>>
|
|
|
|
=cut
|
|
*/
|
|
|
|
void
|
|
Perl_av_unshift(pTHX_ AV *av, SSize_t num)
|
|
{
|
|
SSize_t i;
|
|
MAGIC* mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_UNSHIFT;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(UNSHIFT),
|
|
G_DISCARD | G_UNDEF_FILL, num);
|
|
return;
|
|
}
|
|
|
|
if (num <= 0)
|
|
return;
|
|
if (!AvREAL(av) && AvREIFY(av))
|
|
av_reify(av);
|
|
i = AvARRAY(av) - AvALLOC(av);
|
|
if (i) {
|
|
if (i > num)
|
|
i = num;
|
|
num -= i;
|
|
|
|
AvMAX(av) += i;
|
|
AvFILLp(av) += i;
|
|
AvARRAY(av) = AvARRAY(av) - i;
|
|
}
|
|
if (num) {
|
|
SV **ary;
|
|
const SSize_t i = AvFILLp(av);
|
|
/* Create extra elements */
|
|
const SSize_t slide = i > 0 ? i : 0;
|
|
num += slide;
|
|
av_extend(av, i + num);
|
|
AvFILLp(av) += num;
|
|
ary = AvARRAY(av);
|
|
Move(ary, ary + num, i + 1, SV*);
|
|
do {
|
|
ary[--num] = NULL;
|
|
} while (num);
|
|
/* Make extra elements into a buffer */
|
|
AvMAX(av) -= slide;
|
|
AvFILLp(av) -= slide;
|
|
AvARRAY(av) = AvARRAY(av) + slide;
|
|
}
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_shift
|
|
|
|
Removes one SV from the start of the array, reducing its size by one and
|
|
returning the SV (transferring control of one reference count) to the
|
|
caller. Returns C<&PL_sv_undef> if the array is empty.
|
|
|
|
Perl equivalent: C<shift(@myarray);>
|
|
|
|
=cut
|
|
*/
|
|
|
|
SV *
|
|
Perl_av_shift(pTHX_ AV *av)
|
|
{
|
|
SV *retval;
|
|
MAGIC* mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_SHIFT;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
retval = Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(SHIFT), 0, 0);
|
|
if (retval)
|
|
retval = newSVsv(retval);
|
|
return retval;
|
|
}
|
|
if (AvFILL(av) < 0)
|
|
return &PL_sv_undef;
|
|
retval = *AvARRAY(av);
|
|
if (AvREAL(av))
|
|
*AvARRAY(av) = NULL;
|
|
AvARRAY(av) = AvARRAY(av) + 1;
|
|
AvMAX(av)--;
|
|
AvFILLp(av)--;
|
|
if (SvSMAGICAL(av))
|
|
mg_set(MUTABLE_SV(av));
|
|
return retval ? retval : &PL_sv_undef;
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_top_index
|
|
|
|
Returns the highest index in the array. The number of elements in the
|
|
array is S<C<av_top_index(av) + 1>>. Returns -1 if the array is empty.
|
|
|
|
The Perl equivalent for this is C<$#myarray>.
|
|
|
|
(A slightly shorter form is C<av_tindex>.)
|
|
|
|
=for apidoc av_len
|
|
|
|
Same as L</av_top_index>. Note that, unlike what the name implies, it returns
|
|
the highest index in the array, so to get the size of the array you need to use
|
|
S<C<av_len(av) + 1>>. This is unlike L</sv_len>, which returns what you would
|
|
expect.
|
|
|
|
=cut
|
|
*/
|
|
|
|
SSize_t
|
|
Perl_av_len(pTHX_ AV *av)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_LEN;
|
|
|
|
return av_top_index(av);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_fill
|
|
|
|
Set the highest index in the array to the given number, equivalent to
|
|
Perl's S<C<$#array = $fill;>>.
|
|
|
|
The number of elements in the array will be S<C<fill + 1>> after
|
|
C<av_fill()> returns. If the array was previously shorter, then the
|
|
additional elements appended are set to NULL. If the array
|
|
was longer, then the excess elements are freed. S<C<av_fill(av, -1)>> is
|
|
the same as C<av_clear(av)>.
|
|
|
|
=cut
|
|
*/
|
|
void
|
|
Perl_av_fill(pTHX_ AV *av, SSize_t fill)
|
|
{
|
|
MAGIC *mg;
|
|
|
|
PERL_ARGS_ASSERT_AV_FILL;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (fill < 0)
|
|
fill = -1;
|
|
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
|
|
SV *arg1 = sv_newmortal();
|
|
sv_setiv(arg1, (IV)(fill + 1));
|
|
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(STORESIZE), G_DISCARD,
|
|
1, arg1);
|
|
return;
|
|
}
|
|
if (fill <= AvMAX(av)) {
|
|
SSize_t key = AvFILLp(av);
|
|
SV** const ary = AvARRAY(av);
|
|
|
|
if (AvREAL(av)) {
|
|
while (key > fill) {
|
|
SvREFCNT_dec(ary[key]);
|
|
ary[key--] = NULL;
|
|
}
|
|
}
|
|
else {
|
|
while (key < fill)
|
|
ary[++key] = NULL;
|
|
}
|
|
|
|
AvFILLp(av) = fill;
|
|
if (SvSMAGICAL(av))
|
|
mg_set(MUTABLE_SV(av));
|
|
}
|
|
else
|
|
(void)av_store(av,fill,NULL);
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_delete
|
|
|
|
Deletes the element indexed by C<key> from the array, makes the element
|
|
mortal, and returns it. If C<flags> equals C<G_DISCARD>, the element is
|
|
freed and NULL is returned. NULL is also returned if C<key> is out of
|
|
range.
|
|
|
|
Perl equivalent: S<C<splice(@myarray, $key, 1, undef)>> (with the
|
|
C<splice> in void context if C<G_DISCARD> is present).
|
|
|
|
=cut
|
|
*/
|
|
SV *
|
|
Perl_av_delete(pTHX_ AV *av, SSize_t key, I32 flags)
|
|
{
|
|
SV *sv;
|
|
|
|
PERL_ARGS_ASSERT_AV_DELETE;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvREADONLY(av))
|
|
Perl_croak_no_modify();
|
|
|
|
if (SvRMAGICAL(av)) {
|
|
const MAGIC * const tied_magic
|
|
= mg_find((const SV *)av, PERL_MAGIC_tied);
|
|
if ((tied_magic || mg_find((const SV *)av, PERL_MAGIC_regdata))) {
|
|
SV **svp;
|
|
if (key < 0) {
|
|
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
|
|
return NULL;
|
|
}
|
|
svp = av_fetch(av, key, TRUE);
|
|
if (svp) {
|
|
sv = *svp;
|
|
mg_clear(sv);
|
|
if (mg_find(sv, PERL_MAGIC_tiedelem)) {
|
|
sv_unmagic(sv, PERL_MAGIC_tiedelem); /* No longer an element */
|
|
return sv;
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (key < 0) {
|
|
key += AvFILL(av) + 1;
|
|
if (key < 0)
|
|
return NULL;
|
|
}
|
|
|
|
if (key > AvFILLp(av))
|
|
return NULL;
|
|
else {
|
|
if (!AvREAL(av) && AvREIFY(av))
|
|
av_reify(av);
|
|
sv = AvARRAY(av)[key];
|
|
AvARRAY(av)[key] = NULL;
|
|
if (key == AvFILLp(av)) {
|
|
do {
|
|
AvFILLp(av)--;
|
|
} while (--key >= 0 && !AvARRAY(av)[key]);
|
|
}
|
|
if (SvSMAGICAL(av))
|
|
mg_set(MUTABLE_SV(av));
|
|
}
|
|
if(sv != NULL) {
|
|
if (flags & G_DISCARD) {
|
|
SvREFCNT_dec_NN(sv);
|
|
return NULL;
|
|
}
|
|
else if (AvREAL(av))
|
|
sv_2mortal(sv);
|
|
}
|
|
return sv;
|
|
}
|
|
|
|
/*
|
|
=for apidoc av_exists
|
|
|
|
Returns true if the element indexed by C<key> has been initialized.
|
|
|
|
This relies on the fact that uninitialized array elements are set to
|
|
C<NULL>.
|
|
|
|
Perl equivalent: C<exists($myarray[$key])>.
|
|
|
|
=cut
|
|
*/
|
|
bool
|
|
Perl_av_exists(pTHX_ AV *av, SSize_t key)
|
|
{
|
|
PERL_ARGS_ASSERT_AV_EXISTS;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (SvRMAGICAL(av)) {
|
|
const MAGIC * const tied_magic
|
|
= mg_find((const SV *)av, PERL_MAGIC_tied);
|
|
const MAGIC * const regdata_magic
|
|
= mg_find((const SV *)av, PERL_MAGIC_regdata);
|
|
if (tied_magic || regdata_magic) {
|
|
MAGIC *mg;
|
|
/* Handle negative array indices 20020222 MJD */
|
|
if (key < 0) {
|
|
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
|
|
return FALSE;
|
|
}
|
|
|
|
if(key >= 0 && regdata_magic) {
|
|
if (key <= AvFILL(av))
|
|
return TRUE;
|
|
else
|
|
return FALSE;
|
|
}
|
|
{
|
|
SV * const sv = sv_newmortal();
|
|
mg_copy(MUTABLE_SV(av), sv, 0, key);
|
|
mg = mg_find(sv, PERL_MAGIC_tiedelem);
|
|
if (mg) {
|
|
magic_existspack(sv, mg);
|
|
{
|
|
I32 retbool = SvTRUE_nomg_NN(sv);
|
|
return cBOOL(retbool);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (key < 0) {
|
|
key += AvFILL(av) + 1;
|
|
if (key < 0)
|
|
return FALSE;
|
|
}
|
|
|
|
if (key <= AvFILLp(av) && AvARRAY(av)[key])
|
|
{
|
|
if (SvSMAGICAL(AvARRAY(av)[key])
|
|
&& mg_find(AvARRAY(av)[key], PERL_MAGIC_nonelem))
|
|
return FALSE;
|
|
return TRUE;
|
|
}
|
|
else
|
|
return FALSE;
|
|
}
|
|
|
|
static MAGIC *
|
|
S_get_aux_mg(pTHX_ AV *av) {
|
|
MAGIC *mg;
|
|
|
|
PERL_ARGS_ASSERT_GET_AUX_MG;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
mg = mg_find((const SV *)av, PERL_MAGIC_arylen_p);
|
|
|
|
if (!mg) {
|
|
mg = sv_magicext(MUTABLE_SV(av), 0, PERL_MAGIC_arylen_p,
|
|
&PL_vtbl_arylen_p, 0, 0);
|
|
assert(mg);
|
|
/* sv_magicext won't set this for us because we pass in a NULL obj */
|
|
mg->mg_flags |= MGf_REFCOUNTED;
|
|
}
|
|
return mg;
|
|
}
|
|
|
|
SV **
|
|
Perl_av_arylen_p(pTHX_ AV *av) {
|
|
MAGIC *const mg = get_aux_mg(av);
|
|
|
|
PERL_ARGS_ASSERT_AV_ARYLEN_P;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
return &(mg->mg_obj);
|
|
}
|
|
|
|
IV *
|
|
Perl_av_iter_p(pTHX_ AV *av) {
|
|
MAGIC *const mg = get_aux_mg(av);
|
|
|
|
PERL_ARGS_ASSERT_AV_ITER_P;
|
|
assert(SvTYPE(av) == SVt_PVAV);
|
|
|
|
if (sizeof(IV) == sizeof(SSize_t)) {
|
|
return (IV *)&(mg->mg_len);
|
|
} else {
|
|
if (!mg->mg_ptr) {
|
|
IV *temp;
|
|
mg->mg_len = IVSIZE;
|
|
Newxz(temp, 1, IV);
|
|
mg->mg_ptr = (char *) temp;
|
|
}
|
|
return (IV *)mg->mg_ptr;
|
|
}
|
|
}
|
|
|
|
SV *
|
|
Perl_av_nonelem(pTHX_ AV *av, SSize_t ix) {
|
|
SV * const sv = newSV(0);
|
|
PERL_ARGS_ASSERT_AV_NONELEM;
|
|
if (!av_store(av,ix,sv))
|
|
return sv_2mortal(sv); /* has tie magic */
|
|
sv_magic(sv, NULL, PERL_MAGIC_nonelem, NULL, 0);
|
|
return sv;
|
|
}
|
|
|
|
/*
|
|
* ex: set ts=8 sts=4 sw=4 et:
|
|
*/
|