perl/pp_sort.c
Lukas Mai d002288880 pp_sort: avoid potential I32 overflow from the comparator
Coverity says:

    CID 584092:         Integer handling issues  (INTEGER_OVERFLOW)
    Expression "result", where "Perl_SvIV(my_perl, *my_perl->Istack_sp)" is known to be equal to 0, overflows the type of "result", which is type "I32".

The sort comparison function returns IV (a Perl integer), but all the
sorting routines in this file want to work with I32. Instead of
converting (and possibly truncating) the value directly, normalize the
result to -1/0/1, which fits in any integer type.
2025-09-16 07:10:34 +02:00

1496 lines
48 KiB
C

/* pp_sort.c
*
* Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
* 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/*
* ...they shuffled back towards the rear of the line. 'No, not at the
* rear!' the slave-driver shouted. 'Three files up. And stay there...
*
* [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
*/
/* This file contains pp ("push/pop") functions that
* execute the opcodes that make up a perl program. A typical pp function
* expects to find its arguments on the stack, and usually pushes its
* results onto the stack, hence the 'pp' terminology. Each OP structure
* contains a pointer to the relevant pp_foo() function.
*
* This particular file just contains pp_sort(), which is complex
* enough to merit its own file! See the other pp*.c files for the rest of
* the pp_ functions.
*/
#include "EXTERN.h"
#define PERL_IN_PP_SORT_C
#include "perl.h"
#ifndef SMALLSORT
#define SMALLSORT (200)
#endif
/*
* The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
*
* The original code was written in conjunction with BSD Computer Software
* Research Group at University of California, Berkeley.
*
* See also: "Optimistic Sorting and Information Theoretic Complexity"
* Peter McIlroy
* SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
* pp 467-474, Austin, Texas, 25-27 January 1993.
*
* The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
*
* The code can be distributed under the same terms as Perl itself.
*
*/
typedef char * aptr; /* pointer for arithmetic on sizes */
typedef SV * gptr; /* pointers in our lists */
/* Binary merge internal sort, with a few special mods
** for the special perl environment it now finds itself in.
**
** Things that were once options have been hotwired
** to values suitable for this use. In particular, we'll always
** initialize looking for natural runs, we'll always produce stable
** output, and we'll always do Peter McIlroy's binary merge.
*/
/* Pointer types for arithmetic and storage and convenience casts */
#define APTR(P) ((aptr)(P))
#define GPTP(P) ((gptr *)(P))
#define GPPP(P) ((gptr **)(P))
/* byte offset from pointer P to (larger) pointer Q */
#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
#define PSIZE sizeof(gptr)
/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
#ifdef PSHIFT
#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
#define PNBYTE(N) ((N) << (PSHIFT))
#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
#else
/* Leave optimization to compiler */
#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
#define PNBYTE(N) ((N) * (PSIZE))
#define PINDEX(P, N) (GPTP(P) + (N))
#endif
/* Pointer into other corresponding to pointer into this */
#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
/* Runs are identified by a pointer in the auxiliary list.
** The pointer is at the start of the list,
** and it points to the start of the next list.
** NEXT is used as an lvalue, too.
*/
#define NEXT(P) (*GPPP(P))
/* PTHRESH is the minimum number of pairs with the same sense to justify
** checking for a run and extending it. Note that PTHRESH counts PAIRS,
** not just elements, so PTHRESH == 8 means a run of 16.
*/
#define PTHRESH (8)
/* RTHRESH is the number of elements in a run that must compare low
** to the low element from the opposing run before we justify
** doing a binary rampup instead of single stepping.
** In random input, N in a row low should only happen with
** probability 2^(1-N), so we can risk that we are dealing
** with orderly input without paying much when we aren't.
*/
#define RTHRESH (6)
/*
** Overview of algorithm and variables.
** The array of elements at list1 will be organized into runs of length 2,
** or runs of length >= 2 * PTHRESH. We only try to form long runs when
** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
**
** Unless otherwise specified, pair pointers address the first of two elements.
**
** b and b+1 are a pair that compare with sense "sense".
** b is the "bottom" of adjacent pairs that might form a longer run.
**
** p2 parallels b in the list2 array, where runs are defined by
** a pointer chain.
**
** t represents the "top" of the adjacent pairs that might extend
** the run beginning at b. Usually, t addresses a pair
** that compares with opposite sense from (b,b+1).
** However, it may also address a singleton element at the end of list1,
** or it may be equal to "last", the first element beyond list1.
**
** r addresses the Nth pair following b. If this would be beyond t,
** we back it off to t. Only when r is less than t do we consider the
** run long enough to consider checking.
**
** q addresses a pair such that the pairs at b through q already form a run.
** Often, q will equal b, indicating we only are sure of the pair itself.
** However, a search on the previous cycle may have revealed a longer run,
** so q may be greater than b.
**
** p is used to work back from a candidate r, trying to reach q,
** which would mean b through r would be a run. If we discover such a run,
** we start q at r and try to push it further towards t.
** If b through r is NOT a run, we detect the wrong order at (p-1,p).
** In any event, after the check (if any), we have two main cases.
**
** 1) Short run. b <= q < p <= r <= t.
** b through q is a run (perhaps trivial)
** q through p are uninteresting pairs
** p through r is a run
**
** 2) Long run. b < r <= q < t.
** b through q is a run (of length >= 2 * PTHRESH)
**
** Note that degenerate cases are not only possible, but likely.
** For example, if the pair following b compares with opposite sense,
** then b == q < p == r == t.
*/
PERL_STATIC_FORCE_INLINE IV __attribute__always_inline__
dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
{
I32 sense;
gptr *b, *p, *q, *t, *p2;
gptr *last, *r;
IV runs = 0;
b = list1;
last = PINDEX(b, nmemb);
sense = (cmp(aTHX_ *b, *(b+1)) > 0);
for (p2 = list2; b < last; ) {
/* We just started, or just reversed sense.
** Set t at end of pairs with the prevailing sense.
*/
for (p = b+2, t = p; ++p < last; t = ++p) {
if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
}
q = b;
/* Having laid out the playing field, look for long runs */
do {
p = r = b + (2 * PTHRESH);
if (r >= t) p = r = t; /* too short to care about */
else {
while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
((p -= 2) > q)) {}
if (p <= q) {
/* b through r is a (long) run.
** Extend it as far as possible.
*/
p = q = r;
while (((p += 2) < t) &&
((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
r = p = q + 2; /* no simple pairs, no after-run */
}
}
if (q > b) { /* run of greater than 2 at b */
gptr *savep = p;
p = q += 2;
/* pick up singleton, if possible */
if ((p == t) &&
((t + 1) == last) &&
((cmp(aTHX_ *(p-1), *p) > 0) == sense))
savep = r = p = q = last;
p2 = NEXT(p2) = p2 + (p - b); ++runs;
if (sense)
while (b < --p) {
const gptr c = *b;
*b++ = *p;
*p = c;
}
p = savep;
}
while (q < p) { /* simple pairs */
p2 = NEXT(p2) = p2 + 2; ++runs;
if (sense) {
const gptr c = *q++;
*(q-1) = *q;
*q++ = c;
} else q += 2;
}
if (((b = p) == t) && ((t+1) == last)) {
NEXT(p2) = p2 + 1; ++runs;
b++;
}
q = r;
} while (b < t);
sense = !sense;
}
return runs;
}
/* The original merge sort, in use since 5.7, was as fast as, or faster than,
* qsort on many platforms, but slower than qsort, conspicuously so,
* on others. The most likely explanation was platform-specific
* differences in cache sizes and relative speeds.
*
* The quicksort divide-and-conquer algorithm guarantees that, as the
* problem is subdivided into smaller and smaller parts, the parts
* fit into smaller (and faster) caches. So it doesn't matter how
* many levels of cache exist, quicksort will "find" them, and,
* as long as smaller is faster, take advantage of them.
*
* By contrast, consider how the original mergesort algorithm worked.
* Suppose we have five runs (each typically of length 2 after dynprep).
*
* pass base aux
* 0 1 2 3 4 5
* 1 12 34 5
* 2 1234 5
* 3 12345
* 4 12345
*
* Adjacent pairs are merged in "grand sweeps" through the input.
* This means, on pass 1, the records in runs 1 and 2 aren't revisited until
* runs 3 and 4 are merged and the runs from run 5 have been copied.
* The only cache that matters is one large enough to hold *all* the input.
* On some platforms, this may be many times slower than smaller caches.
*
* The following pseudo-code uses the same basic merge algorithm,
* but in a divide-and-conquer way.
*
* # merge $runs runs at offset $offset of list $list1 into $list2.
* # all unmerged runs ($runs == 1) originate in list $base.
* sub mgsort2 {
* my ($offset, $runs, $base, $list1, $list2) = @_;
*
* if ($runs == 1) {
* if ($list1 is $base) copy run to $list2
* return offset of end of list (or copy)
* } else {
* $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
* mgsort2($off2, $runs/2, $base, $list2, $list1)
* merge the adjacent runs at $offset of $list1 into $list2
* return the offset of the end of the merged runs
* }
* }
* mgsort2(0, $runs, $base, $aux, $base);
*
* For our 5 runs, the tree of calls looks like
*
* 5
* 3 2
* 2 1 1 1
* 1 1
*
* 1 2 3 4 5
*
* and the corresponding activity looks like
*
* copy runs 1 and 2 from base to aux
* merge runs 1 and 2 from aux to base
* (run 3 is where it belongs, no copy needed)
* merge runs 12 and 3 from base to aux
* (runs 4 and 5 are where they belong, no copy needed)
* merge runs 4 and 5 from base to aux
* merge runs 123 and 45 from aux to base
*
* Note that we merge runs 1 and 2 immediately after copying them,
* while they are still likely to be in fast cache. Similarly,
* run 3 is merged with run 12 while it still may be lingering in cache.
* This implementation should therefore enjoy much of the cache-friendly
* behavior that quicksort does. In addition, it does less copying
* than the original mergesort implementation (only runs 1 and 2 are copied)
* and the "balancing" of merges is better (merged runs comprise more nearly
* equal numbers of original runs).
*
* The actual cache-friendly implementation will use a pseudo-stack
* to avoid recursion, and will unroll processing of runs of length 2,
* but it is otherwise similar to the recursive implementation.
*/
typedef struct {
IV offset; /* offset of 1st of 2 runs at this level */
IV runs; /* how many runs must be combined into 1 */
} off_runs; /* pseudo-stack element */
PERL_STATIC_FORCE_INLINE void
S_sortsv_flags_impl(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
{
IV i, run, offset;
I32 sense, level;
gptr *f1, *f2, *t, *b, *p;
int iwhich;
gptr *aux;
gptr *p1;
gptr small[SMALLSORT];
gptr *which[3];
off_runs stack[60], *stackp;
PERL_UNUSED_ARG(flags);
PERL_ARGS_ASSERT_SORTSV_FLAGS_IMPL;
if (nmemb <= 1) return; /* sorted trivially */
if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */
level = 0;
stackp = stack;
stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
stackp->offset = offset = 0;
which[0] = which[2] = base;
which[1] = aux;
for (;;) {
/* On levels where both runs have be constructed (stackp->runs == 0),
* merge them, and note the offset of their end, in case the offset
* is needed at the next level up. Hop up a level, and,
* as long as stackp->runs is 0, keep merging.
*/
IV runs = stackp->runs;
if (runs == 0) {
gptr *list1, *list2;
iwhich = level & 1;
list1 = which[iwhich]; /* area where runs are now */
list2 = which[++iwhich]; /* area for merged runs */
do {
gptr *l1, *l2, *tp2;
offset = stackp->offset;
f1 = p1 = list1 + offset; /* start of first run */
p = tp2 = list2 + offset; /* where merged run will go */
t = NEXT(p); /* where first run ends */
f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
t = NEXT(t); /* where second runs ends */
l2 = POTHER(t, list2, list1); /* ... on the other side */
offset = PNELEM(list2, t);
while (f1 < l1 && f2 < l2) {
/* If head 1 is larger than head 2, find ALL the elements
** in list 2 strictly less than head1, write them all,
** then head 1. Then compare the new heads, and repeat,
** until one or both lists are exhausted.
**
** In all comparisons (after establishing
** which head to merge) the item to merge
** (at pointer q) is the first operand of
** the comparison. When we want to know
** if "q is strictly less than the other",
** we can't just do
** cmp(q, other) < 0
** because stability demands that we treat equality
** as high when q comes from l2, and as low when
** q was from l1. So we ask the question by doing
** cmp(q, other) <= sense
** and make sense == 0 when equality should look low,
** and -1 when equality should look high.
*/
gptr *q;
if (cmp(aTHX_ *f1, *f2) <= 0) {
q = f2; b = f1; t = l1;
sense = -1;
} else {
q = f1; b = f2; t = l2;
sense = 0;
}
/* ramp up
**
** Leave t at something strictly
** greater than q (or at the end of the list),
** and b at something strictly less than q.
*/
for (i = 1, run = 0 ;;) {
if ((p = PINDEX(b, i)) >= t) {
/* off the end */
if (((p = PINDEX(t, -1)) > b) &&
(cmp(aTHX_ *q, *p) <= sense))
t = p;
else b = p;
break;
} else if (cmp(aTHX_ *q, *p) <= sense) {
t = p;
break;
} else b = p;
if (++run >= RTHRESH) i += i;
}
/* q is known to follow b and must be inserted before t.
** Increment b, so the range of possibilities is [b,t).
** Round binary split down, to favor early appearance.
** Adjust b and t until q belongs just before t.
*/
b++;
while (b < t) {
p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
if (cmp(aTHX_ *q, *p) <= sense) {
t = p;
} else b = p + 1;
}
/* Copy all the strictly low elements */
if (q == f1) {
FROMTOUPTO(f2, tp2, t);
*tp2++ = *f1++;
} else {
FROMTOUPTO(f1, tp2, t);
*tp2++ = *f2++;
}
}
/* Run out remaining list */
if (f1 == l1) {
if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
} else FROMTOUPTO(f1, tp2, l1);
p1 = NEXT(p1) = POTHER(tp2, list2, list1);
if (--level == 0) goto done;
--stackp;
t = list1; list1 = list2; list2 = t; /* swap lists */
} while ((runs = stackp->runs) == 0);
}
stackp->runs = 0; /* current run will finish level */
/* While there are more than 2 runs remaining,
* turn them into exactly 2 runs (at the "other" level),
* each made up of approximately half the runs.
* Stack the second half for later processing,
* and set about producing the first half now.
*/
while (runs > 2) {
++level;
++stackp;
stackp->offset = offset;
runs -= stackp->runs = runs / 2;
}
/* We must construct a single run from 1 or 2 runs.
* All the original runs are in which[0] == base.
* The run we construct must end up in which[level&1].
*/
iwhich = level & 1;
if (runs == 1) {
/* Constructing a single run from a single run.
* If it's where it belongs already, there's nothing to do.
* Otherwise, copy it to where it belongs.
* A run of 1 is either a singleton at level 0,
* or the second half of a split 3. In neither event
* is it necessary to set offset. It will be set by the merge
* that immediately follows.
*/
if (iwhich) { /* Belongs in aux, currently in base */
f1 = b = PINDEX(base, offset); /* where list starts */
f2 = PINDEX(aux, offset); /* where list goes */
t = NEXT(f2); /* where list will end */
offset = PNELEM(aux, t); /* offset thereof */
t = PINDEX(base, offset); /* where it currently ends */
FROMTOUPTO(f1, f2, t); /* copy */
NEXT(b) = t; /* set up parallel pointer */
} else if (level == 0) goto done; /* single run at level 0 */
} else {
/* Constructing a single run from two runs.
* The merge code at the top will do that.
* We need only make sure the two runs are in the "other" array,
* so they'll end up in the correct array after the merge.
*/
++level;
++stackp;
stackp->offset = offset;
stackp->runs = 0; /* take care of both runs, trigger merge */
if (!iwhich) { /* Merged runs belong in aux, copy 1st */
f1 = b = PINDEX(base, offset); /* where first run starts */
f2 = PINDEX(aux, offset); /* where it will be copied */
t = NEXT(f2); /* where first run will end */
offset = PNELEM(aux, t); /* offset thereof */
p = PINDEX(base, offset); /* end of first run */
t = NEXT(t); /* where second run will end */
t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
FROMTOUPTO(f1, f2, t); /* copy both runs */
NEXT(b) = p; /* paralleled pointer for 1st */
NEXT(p) = t; /* ... and for second */
}
}
}
done:
if (aux != small) Safefree(aux); /* free iff allocated */
return;
}
/*
=for apidoc sortsv_flags
In-place sort an array of SV pointers with the given comparison routine,
with various SORTf_* flag options.
=cut
*/
void
Perl_sortsv_flags(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
{
PERL_ARGS_ASSERT_SORTSV_FLAGS;
sortsv_flags_impl(base, nmemb, cmp, flags);
}
/*
* Each of sortsv_* functions contains an inlined copy of
* sortsv_flags_impl() with an inlined comparator. Basically, we are
* emulating C++ templates by using __attribute__((always_inline)).
*
* The purpose of that is to avoid the function call overhead inside
* the sorting routine, which calls the comparison function multiple
* times per sorted item.
*/
static void
sortsv_amagic_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp, flags);
}
static void
sortsv_amagic_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp_desc, flags);
}
static void
sortsv_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_sv_i_ncmp, flags);
}
static void
sortsv_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_sv_i_ncmp_desc, flags);
}
static void
sortsv_amagic_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_ncmp, flags);
}
static void
sortsv_amagic_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_ncmp_desc, flags);
}
static void
sortsv_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_sv_ncmp, flags);
}
static void
sortsv_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_sv_ncmp_desc, flags);
}
static void
sortsv_amagic_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_cmp, flags);
}
static void
sortsv_amagic_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_cmp_desc, flags);
}
static void
sortsv_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, Perl_sv_cmp, flags);
}
static void
sortsv_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_cmp_desc, flags);
}
#ifdef USE_LOCALE_COLLATE
static void
sortsv_amagic_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale, flags);
}
static void
sortsv_amagic_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale_desc, flags);
}
static void
sortsv_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, Perl_sv_cmp_locale, flags);
}
static void
sortsv_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_cmp_locale_desc, flags);
}
#endif
/*
=for apidoc sortsv
In-place sort an array of SV pointers with the given comparison routine.
Currently this always uses mergesort. See C<L</sortsv_flags>> for a more
flexible routine.
=cut
*/
void
Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
{
PERL_ARGS_ASSERT_SORTSV;
sortsv_flags(array, nmemb, cmp, 0);
}
#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
PP(pp_sort)
{
dMARK; dORIGMARK;
SV **p1 = ORIGMARK+1, **p2;
SSize_t max, i;
AV* av = NULL;
GV *gv;
CV *cv = NULL;
U8 gimme = GIMME_V;
OP* const nextop = PL_op->op_next;
I32 overloading = 0;
bool hasargs = FALSE; /* the sort sub has proto($$)? */
bool copytmps;
I32 is_xsub = 0;
const U8 priv = PL_op->op_private;
const U8 flags = PL_op->op_flags;
U32 sort_flags = 0;
I32 all_SIVs = 1, descending = 0;
if ((priv & OPpSORT_DESCEND) != 0)
descending = 1;
if (gimme != G_LIST) {
rpp_popfree_to_NN(mark);
rpp_xpush_IMM(&PL_sv_undef);
return NORMAL;
}
ENTER;
SAVEVPTR(PL_sortcop);
/* Important flag meanings:
*
* OPf_STACKED sort <function_name> args
*
* (OPf_STACKED
* |OPf_SPECIAL) sort { <block> } args
*
* ---- standard block; e.g. sort { $a <=> $b } args
*
*
* OPpSORT_NUMERIC { $a <=> $b } (as opposed to $a cmp $b)
* OPpSORT_INTEGER ditto in scope of 'use integer'
* OPpSORT_DESCEND { $b <=> $a }
* OPpSORT_REVERSE @a= reverse sort ....;
* OPpSORT_INPLACE @a = sort @a;
*/
if (flags & OPf_STACKED) {
if (flags & OPf_SPECIAL) {
OP *nullop = OpSIBLING(cLISTOP->op_first); /* pass pushmark */
assert(nullop->op_type == OP_NULL);
PL_sortcop = nullop->op_next;
}
else {
/* sort <function_name> list */
GV *autogv = NULL;
HV *stash;
SV *fn = *++MARK;
cv = sv_2cv(fn, &stash, &gv, GV_ADD);
/* want to remove the function name from the stack,
* but mustn't trigger cv being freed at the same time.
* Normally the name is a PV while cv is CV (duh!) but
* for lexical subs, fn can already be the CV (but is kept
* alive by a reference from the pad */
#ifdef PERL_RC_STACK
assert(fn != (SV*)cv || SvREFCNT(fn) > 1);
SvREFCNT_dec(fn);
#endif
*MARK = NULL;
check_cv:
if (cv && SvPOK(cv)) {
const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
if (proto && strEQ(proto, "$$")) {
hasargs = TRUE;
}
}
if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
is_xsub = 1;
}
else if (!(cv && CvROOT(cv))) {
if (gv) {
goto autoload;
}
else if (!CvANON(cv) && (gv = CvGV(cv))) {
if (cv != GvCV(gv)) cv = GvCV(gv);
autoload:
if (!autogv && (
autogv = gv_autoload_pvn(
GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
GvNAMEUTF8(gv) ? SVf_UTF8 : 0
)
)) {
cv = GvCVu(autogv);
goto check_cv;
}
else {
SV *tmpstr = sv_newmortal();
gv_efullname3(tmpstr, gv, NULL);
DIE(aTHX_ "Undefined sort subroutine \"%" SVf "\" called",
SVfARG(tmpstr));
}
}
else {
DIE(aTHX_ "Undefined subroutine in sort");
}
}
if (is_xsub)
PL_sortcop = (OP*)cv;
else
PL_sortcop = CvSTART(cv);
}
}
else {
PL_sortcop = NULL;
}
/* optimiser converts "@a = sort @a" to "sort \@a". In this case,
* push (@a) onto stack, then assign result back to @a at the end of
* this function */
if (priv & OPpSORT_INPLACE) {
assert( MARK+1 == PL_stack_sp
&& *PL_stack_sp
&& SvTYPE(*PL_stack_sp) == SVt_PVAV);
(void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
av = MUTABLE_AV((*PL_stack_sp));
if (SvREADONLY(av))
croak_no_modify();
max = AvFILL(av) + 1;
I32 oldmark = MARK - PL_stack_base;
rpp_extend(max);
MARK = PL_stack_base + oldmark;
if (SvMAGICAL(av)) {
for (i=0; i < max; i++) {
SV **svp = av_fetch(av, i, FALSE);
SV *sv;
if (svp) {
sv = *svp;
#ifdef PERL_RC_STACK
SvREFCNT_inc_simple_void_NN(sv);
#endif
}
else
sv = NULL;
*++PL_stack_sp = sv;
}
}
else {
SV **svp = AvARRAY(av);
assert(svp || max == 0);
for (i = 0; i < max; i++) {
SV *sv = *svp++;
#ifdef PERL_RC_STACK
SvREFCNT_inc_simple_void(sv);
#endif
*++PL_stack_sp = sv;
}
}
p1 = p2 = PL_stack_sp - (max-1);
/* we've kept av on the stacck (just below the pushed contents) so
* that a reference-counted stack keeps a reference to it for now
*/
assert((SV*)av == p1[-1]);
}
else {
p2 = MARK+1;
max = PL_stack_sp - MARK;
}
/* shuffle stack down, removing optional initial cv (p1!=p2), plus
* any nulls; also stringify or converting to integer or number as
* required any args */
/* no ref-counted SVs at base to be overwritten */
assert(p1 == p2 || (p1+1 == p2 && !*p1));
copytmps = cBOOL(PL_sortcop);
for (i=max; i > 0 ; i--) {
SV *sv = *p2++;
if (sv) { /* Weed out nulls. */
if (copytmps && SvPADTMP(sv)) {
SV *nsv = sv_mortalcopy(sv);
#ifdef PERL_RC_STACK
SvREFCNT_dec_NN(sv);
SvREFCNT_inc_simple_void_NN(nsv);
#endif
sv = nsv;
}
SvTEMP_off(sv);
if (!PL_sortcop) {
if (priv & OPpSORT_NUMERIC) {
if (priv & OPpSORT_INTEGER) {
if (!SvIOK(sv))
(void)sv_2iv_flags(sv, SV_GMAGIC|SV_SKIP_OVERLOAD);
}
else {
if (!SvNSIOK(sv))
(void)sv_2nv_flags(sv, SV_GMAGIC|SV_SKIP_OVERLOAD);
if (all_SIVs && !SvSIOK(sv))
all_SIVs = 0;
}
}
else {
if (!SvPOK(sv))
(void)sv_2pv_flags(sv, 0,
SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
}
if (SvAMAGIC(sv))
overloading = 1;
}
*p1++ = sv;
}
else
max--;
}
if (max > 1) {
SV **start;
if (PL_sortcop) {
PERL_CONTEXT *cx;
const bool oldcatch = CATCH_GET;
I32 old_savestack_ix = PL_savestack_ix;
SAVEOP();
CATCH_SET(TRUE);
push_stackinfo(PERLSI_SORT, 1);
if (!hasargs && !is_xsub) {
/* standard perl sub with values passed as $a and $b */
SAVEGENERICSV(PL_firstgv);
SAVEGENERICSV(PL_secondgv);
PL_firstgv = GvREFCNT_inc(
gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
);
PL_secondgv = GvREFCNT_inc(
gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
);
/* make sure the GP isn't removed out from under us for
* the SAVESPTR() */
save_gp(PL_firstgv, 0);
save_gp(PL_secondgv, 0);
/* we don't want modifications localized */
GvINTRO_off(PL_firstgv);
GvINTRO_off(PL_secondgv);
SAVEGENERICSV(GvSV(PL_firstgv));
SvREFCNT_inc(GvSV(PL_firstgv));
SAVEGENERICSV(GvSV(PL_secondgv));
SvREFCNT_inc(GvSV(PL_secondgv));
}
gimme = G_SCALAR;
cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix);
if (!(flags & OPf_SPECIAL)) {
cx->cx_type = CXt_SUB|CXp_MULTICALL;
cx_pushsub(cx, cv, NULL, hasargs);
if (!is_xsub) {
PADLIST * const padlist = CvPADLIST(cv);
if (++CvDEPTH(cv) >= 2)
pad_push(padlist, CvDEPTH(cv));
PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
if (hasargs) {
/* This is mostly copied from pp_entersub */
AV * const av0 = MUTABLE_AV(PAD_SVl(0));
cx->blk_sub.savearray = GvAV(PL_defgv);
GvAV(PL_defgv) = AvREFCNT_inc_simple(av0);
}
}
}
start = p1 - max;
Perl_sortsv_flags(aTHX_ start, max,
(is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
sort_flags);
/* Reset cx, in case the context stack has been reallocated. */
cx = CX_CUR();
/* the code used to think this could be > 0 */
assert(cx->blk_oldsp == 0);
rpp_popfree_to_NN(PL_stack_base);
CX_LEAVE_SCOPE(cx);
if (!(flags & OPf_SPECIAL)) {
assert(CxTYPE(cx) == CXt_SUB);
cx_popsub(cx);
}
else
assert(CxTYPE(cx) == CXt_NULL);
/* there isn't a POPNULL ! */
cx_popblock(cx);
CX_POP(cx);
pop_stackinfo();
CATCH_SET(oldcatch);
}
else {
/* call one of the built-in sort functions */
/* XXX this extend has been here since perl5.000. With safe
* signals, I don't think it's needed any more - DAPM.
MEXTEND(SP, 20); Can't afford stack realloc on signal.
*/
start = p1 - max;
if (priv & OPpSORT_NUMERIC) {
if ((priv & OPpSORT_INTEGER) || all_SIVs) {
if (overloading)
if (descending)
sortsv_amagic_i_ncmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_amagic_i_ncmp(aTHX_ start, max, sort_flags);
else
if (descending)
sortsv_i_ncmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_i_ncmp(aTHX_ start, max, sort_flags);
}
else {
if (overloading)
if (descending)
sortsv_amagic_ncmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_amagic_ncmp(aTHX_ start, max, sort_flags);
else
if (descending)
sortsv_ncmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_ncmp(aTHX_ start, max, sort_flags);
}
}
#ifdef USE_LOCALE_COLLATE
else if(IN_LC_RUNTIME(LC_COLLATE)) {
if (overloading)
if (descending)
sortsv_amagic_cmp_locale_desc(aTHX_ start, max, sort_flags);
else
sortsv_amagic_cmp_locale(aTHX_ start, max, sort_flags);
else
if (descending)
sortsv_cmp_locale_desc(aTHX_ start, max, sort_flags);
else
sortsv_cmp_locale(aTHX_ start, max, sort_flags);
}
#endif
else {
if (overloading)
if (descending)
sortsv_amagic_cmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_amagic_cmp(aTHX_ start, max, sort_flags);
else
if (descending)
sortsv_cmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_cmp(aTHX_ start, max, sort_flags);
}
}
if ((priv & OPpSORT_REVERSE) != 0) {
SV **q = start+max-1;
while (start < q) {
SV * const tmp = *start;
*start++ = *q;
*q-- = tmp;
}
}
}
if (!av) {
LEAVE;
PL_stack_sp = ORIGMARK + max;
return nextop;
}
/* OPpSORT_INPLACE: copy back result to the array */
{
SV** const base = MARK+2;
SSize_t max_minus_one = max - 1; /* attempt to work around mingw bug */
/* we left the AV there so on a refcounted stack it wouldn't be
* prematurely freed */
assert(base[-1] == (SV*)av);
if (SvMAGICAL(av)) {
for (i = 0; i <= max_minus_one; i++) {
SV *sv = base[i];
base[i] = newSVsv(sv);
#ifdef PERL_RC_STACK
SvREFCNT_dec_NN(sv);
#endif
}
av_clear(av);
if (max_minus_one >= 0)
av_extend(av, max_minus_one);
for (i=0; i <= max_minus_one; i++) {
SV * const sv = base[i];
SV ** const didstore = av_store(av, i, sv);
if (SvSMAGICAL(sv))
mg_set(sv);
#ifdef PERL_RC_STACK
if (didstore)
SvREFCNT_inc_simple_void_NN(sv);
#else
if (!didstore)
sv_2mortal(sv);
#endif
}
}
else {
/* the elements of av are likely to be the same as the
* (non-refcounted) elements on the stack, just in a different
* order. However, its possible that someone's messed with av
* in the meantime.
* So to avoid freeing most/all the stack elements when
* doing av_clear(), first bump the count on each element.
* In addition, normally a *copy* of each sv should be
* assigned to each array element; but if the only reference
* to that sv was from the array, then we can skip the copy.
*
* For a refcounted stack, it's not necessary to bump the
* refcounts initially, as the stack itself keeps the
* elements alive during av_clear().
*
*/
for (i = 0; i <= max_minus_one; i++) {
SV *sv = base[i];
assert(sv);
#ifdef PERL_RC_STACK
if (SvREFCNT(sv) > 2) {
base[i] = newSVsv(sv);
SvREFCNT_dec_NN(sv);
}
#else
if (SvREFCNT(sv) > 1)
base[i] = newSVsv(sv);
else
SvREFCNT_inc_simple_void_NN(sv);
#endif
}
av_clear(av);
if (max_minus_one >= 0) {
av_extend(av, max_minus_one);
Copy(base, AvARRAY(av), max, SV*);
}
AvFILLp(av) = max_minus_one;
AvREIFY_off(av);
AvREAL_on(av);
}
/* sort is only ever optimised with OPpSORT_INPLACE when the
* (@a = sort @a) is in void context. (As an aside: the context
* flag aught to be copied to the sort op: then we could assert
* here that it's void).
* Thus we can simply discard the stack elements now: their
* reference counts have already claimed by av - hence not using
* rpp_popfree_to() here.
*/
PL_stack_sp = ORIGMARK;
#ifdef PERL_RC_STACK
SvREFCNT_dec_NN(av);
#endif
LEAVE;
return nextop;
}
}
/* call a traditional perl compare function, setting $a and $b */
static I32
S_sortcv(pTHX_ SV *const a, SV *const b)
{
const I32 oldsaveix = PL_savestack_ix;
PMOP * const pm = PL_curpm;
COP * const cop = PL_curcop;
SV *olda, *oldb;
PERL_ARGS_ASSERT_SORTCV;
#ifdef PERL_RC_STACK
assert(rpp_stack_is_rc());
#endif
olda = GvSV(PL_firstgv);
GvSV(PL_firstgv) = SvREFCNT_inc_simple_NN(a);
SvREFCNT_dec(olda);
oldb = GvSV(PL_secondgv);
GvSV(PL_secondgv) = SvREFCNT_inc_simple_NN(b);
SvREFCNT_dec(oldb);
assert(PL_stack_sp == PL_stack_base);
PL_op = PL_sortcop;
CALLRUNOPS(aTHX);
PL_curcop = cop;
/* entry zero of a stack is always PL_sv_undef, which
* simplifies converting a '()' return into undef in scalar context */
assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
const IV iv = SvIV(*PL_stack_sp);
const I32 result =
iv > 0 ? 1 :
iv < 0 ? -1 :
0;
rpp_popfree_to_NN(PL_stack_base);
LEAVE_SCOPE(oldsaveix);
PL_curpm = pm;
return result;
}
/* call a perl compare function that has a ($$) prototype, setting @_ */
static I32
S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
{
const I32 oldsaveix = PL_savestack_ix;
AV * const av = GvAV(PL_defgv);
PMOP * const pm = PL_curpm;
COP * const cop = PL_curcop;
PERL_ARGS_ASSERT_SORTCV_STACKED;
#ifdef PERL_RC_STACK
assert(rpp_stack_is_rc());
#endif
#ifdef PERL_RC_STACK
assert(AvREAL(av));
av_clear(av);
#else
if (AvREAL(av)) {
av_clear(av);
AvREAL_off(av);
AvREIFY_on(av);
}
#endif
if (AvMAX(av) < 1) {
SV **ary = AvALLOC(av);
if (AvARRAY(av) != ary) {
AvMAX(av) += AvARRAY(av) - AvALLOC(av);
AvARRAY(av) = ary;
}
if (AvMAX(av) < 1) {
Renew(ary,2,SV*);
AvMAX(av) = 1;
AvARRAY(av) = ary;
AvALLOC(av) = ary;
}
}
AvFILLp(av) = 1;
AvARRAY(av)[0] = a;
AvARRAY(av)[1] = b;
#ifdef PERL_RC_STACK
SvREFCNT_inc_simple_void_NN(a);
SvREFCNT_inc_simple_void_NN(b);
#endif
assert(PL_stack_sp == PL_stack_base);
PL_op = PL_sortcop;
CALLRUNOPS(aTHX);
PL_curcop = cop;
/* entry zero of a stack is always PL_sv_undef, which
* simplifies converting a '()' return into undef in scalar context */
assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
const IV iv = SvIV(*PL_stack_sp);
const I32 result =
iv > 0 ? 1 :
iv < 0 ? -1 :
0;
rpp_popfree_to_NN(PL_stack_base);
LEAVE_SCOPE(oldsaveix);
PL_curpm = pm;
return result;
}
/* call an XS compare function. (The two args are always passed on the
* stack, regardless of whether it has a ($$) prototype or not.) */
static I32
S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
{
const I32 oldsaveix = PL_savestack_ix;
CV * const cv=MUTABLE_CV(PL_sortcop);
PMOP * const pm = PL_curpm;
PERL_ARGS_ASSERT_SORTCV_XSUB;
#ifdef PERL_RC_STACK
assert(rpp_stack_is_rc());
#endif
assert(PL_stack_sp == PL_stack_base);
PUSHMARK(PL_stack_sp);
rpp_xpush_2(a, b);
rpp_invoke_xs(cv);
/* entry zero of a stack is always PL_sv_undef, which
* simplifies converting a '()' return into undef in scalar context */
assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
const IV iv = SvIV(*PL_stack_sp);
const I32 result =
iv > 0 ? 1 :
iv < 0 ? -1 :
0;
rpp_popfree_to_NN(PL_stack_base);
LEAVE_SCOPE(oldsaveix);
PL_curpm = pm;
return result;
}
PERL_STATIC_FORCE_INLINE I32
S_sv_ncmp(pTHX_ SV *const a, SV *const b)
{
I32 cmp = do_ncmp(a, b);
PERL_ARGS_ASSERT_SV_NCMP;
if (cmp == 2) {
if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
return 0;
}
return cmp;
}
PERL_STATIC_FORCE_INLINE I32
S_sv_ncmp_desc(pTHX_ SV *const a, SV *const b)
{
PERL_ARGS_ASSERT_SV_NCMP_DESC;
return -S_sv_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
{
const IV iv1 = SvIV(a);
const IV iv2 = SvIV(b);
PERL_ARGS_ASSERT_SV_I_NCMP;
return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
}
PERL_STATIC_FORCE_INLINE I32
S_sv_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
{
PERL_ARGS_ASSERT_SV_I_NCMP_DESC;
return -S_sv_i_ncmp(aTHX_ a, b);
}
#define tryCALL_AMAGICbin(left,right,meth) \
(SvAMAGIC(left)||SvAMAGIC(right)) \
? amagic_call(left, right, meth, 0) \
: NULL;
#define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0))
PERL_STATIC_FORCE_INLINE I32
S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
{
SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
PERL_ARGS_ASSERT_AMAGIC_NCMP;
if (tmpsv) {
if (SvIOK(tmpsv)) {
const I32 i = SvIVX(tmpsv);
return SORT_NORMAL_RETURN_VALUE(i);
}
else {
const NV d = SvNV(tmpsv);
return SORT_NORMAL_RETURN_VALUE(d);
}
}
return S_sv_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_ncmp_desc(pTHX_ SV *const a, SV *const b)
{
PERL_ARGS_ASSERT_AMAGIC_NCMP_DESC;
return -S_amagic_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
{
SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
if (tmpsv) {
if (SvIOK(tmpsv)) {
const I32 i = SvIVX(tmpsv);
return SORT_NORMAL_RETURN_VALUE(i);
}
else {
const NV d = SvNV(tmpsv);
return SORT_NORMAL_RETURN_VALUE(d);
}
}
return S_sv_i_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
{
PERL_ARGS_ASSERT_AMAGIC_I_NCMP_DESC;
return -S_amagic_i_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
{
SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
PERL_ARGS_ASSERT_AMAGIC_CMP;
if (tmpsv) {
if (SvIOK(tmpsv)) {
const I32 i = SvIVX(tmpsv);
return SORT_NORMAL_RETURN_VALUE(i);
}
else {
const NV d = SvNV(tmpsv);
return SORT_NORMAL_RETURN_VALUE(d);
}
}
return sv_cmp(str1, str2);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_desc(pTHX_ SV *const str1, SV *const str2)
{
PERL_ARGS_ASSERT_AMAGIC_CMP_DESC;
return -S_amagic_cmp(aTHX_ str1, str2);
}
PERL_STATIC_FORCE_INLINE I32
S_cmp_desc(pTHX_ SV *const str1, SV *const str2)
{
PERL_ARGS_ASSERT_CMP_DESC;
return -sv_cmp(str1, str2);
}
#ifdef USE_LOCALE_COLLATE
PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
{
SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
if (tmpsv) {
if (SvIOK(tmpsv)) {
const I32 i = SvIVX(tmpsv);
return SORT_NORMAL_RETURN_VALUE(i);
}
else {
const NV d = SvNV(tmpsv);
return SORT_NORMAL_RETURN_VALUE(d);
}
}
return sv_cmp_locale(str1, str2);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
{
PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE_DESC;
return -S_amagic_cmp_locale(aTHX_ str1, str2);
}
PERL_STATIC_FORCE_INLINE I32
S_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
{
PERL_ARGS_ASSERT_CMP_LOCALE_DESC;
return -sv_cmp_locale(str1, str2);
}
#endif
/*
* ex: set ts=8 sts=4 sw=4 et:
*/