mirror of
https://github.com/ruby/ruby.git
synced 2026-01-26 20:19:19 +00:00
768 lines
18 KiB
C
768 lines
18 KiB
C
// Glue code shared between YJIT and ZJIT for use from Rust.
|
|
// For FFI safety and bindgen compatibility reasons, certain types of C
|
|
// functions require wrapping before they can be called from Rust. Those show
|
|
// up here.
|
|
//
|
|
// Code specific to YJIT and ZJIT should go to yjit.c and zjit.c respectively.
|
|
|
|
#include "internal.h"
|
|
#include "vm_core.h"
|
|
#include "vm_callinfo.h"
|
|
#include "builtin.h"
|
|
#include "insns.inc"
|
|
#include "insns_info.inc"
|
|
#include "iseq.h"
|
|
#include "internal/gc.h"
|
|
#include "vm_sync.h"
|
|
#include "internal/fixnum.h"
|
|
#include "internal/string.h"
|
|
|
|
enum jit_bindgen_constants {
|
|
// Field offsets for the RObject struct
|
|
ROBJECT_OFFSET_AS_HEAP_FIELDS = offsetof(struct RObject, as.heap.fields),
|
|
ROBJECT_OFFSET_AS_ARY = offsetof(struct RObject, as.ary),
|
|
|
|
// Field offsets for the RString struct
|
|
RUBY_OFFSET_RSTRING_LEN = offsetof(struct RString, len)
|
|
};
|
|
|
|
// Manually bound in rust since this is out-of-range of `int`,
|
|
// so this can't be in a `enum`, and we avoid `static const`
|
|
// to avoid allocating storage for the constant.
|
|
const shape_id_t rb_invalid_shape_id = INVALID_SHAPE_ID;
|
|
|
|
unsigned int
|
|
rb_iseq_encoded_size(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->iseq_size;
|
|
}
|
|
|
|
// Get the PC for a given index in an iseq
|
|
VALUE *
|
|
rb_iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx)
|
|
{
|
|
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
|
|
RUBY_ASSERT_ALWAYS(insn_idx < iseq->body->iseq_size);
|
|
VALUE *encoded = iseq->body->iseq_encoded;
|
|
VALUE *pc = &encoded[insn_idx];
|
|
return pc;
|
|
}
|
|
|
|
// Get the opcode given a program counter. Can return trace opcode variants.
|
|
int
|
|
rb_iseq_opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc)
|
|
{
|
|
// YJIT should only use iseqs after AST to bytecode compilation
|
|
RUBY_ASSERT_ALWAYS(FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED));
|
|
|
|
const VALUE at_pc = *pc;
|
|
return rb_vm_insn_addr2opcode((const void *)at_pc);
|
|
}
|
|
|
|
unsigned long
|
|
rb_RSTRING_LEN(VALUE str)
|
|
{
|
|
return RSTRING_LEN(str);
|
|
}
|
|
|
|
char *
|
|
rb_RSTRING_PTR(VALUE str)
|
|
{
|
|
return RSTRING_PTR(str);
|
|
}
|
|
|
|
const char *
|
|
rb_insn_name(VALUE insn)
|
|
{
|
|
return insn_name(insn);
|
|
}
|
|
|
|
unsigned int
|
|
rb_vm_ci_argc(const struct rb_callinfo *ci)
|
|
{
|
|
return vm_ci_argc(ci);
|
|
}
|
|
|
|
ID
|
|
rb_vm_ci_mid(const struct rb_callinfo *ci)
|
|
{
|
|
return vm_ci_mid(ci);
|
|
}
|
|
|
|
unsigned int
|
|
rb_vm_ci_flag(const struct rb_callinfo *ci)
|
|
{
|
|
return vm_ci_flag(ci);
|
|
}
|
|
|
|
const struct rb_callinfo_kwarg *
|
|
rb_vm_ci_kwarg(const struct rb_callinfo *ci)
|
|
{
|
|
return vm_ci_kwarg(ci);
|
|
}
|
|
|
|
int
|
|
rb_get_cikw_keyword_len(const struct rb_callinfo_kwarg *cikw)
|
|
{
|
|
return cikw->keyword_len;
|
|
}
|
|
|
|
VALUE
|
|
rb_get_cikw_keywords_idx(const struct rb_callinfo_kwarg *cikw, int idx)
|
|
{
|
|
return cikw->keywords[idx];
|
|
}
|
|
|
|
rb_method_visibility_t
|
|
rb_METHOD_ENTRY_VISI(const rb_callable_method_entry_t *me)
|
|
{
|
|
return METHOD_ENTRY_VISI(me);
|
|
}
|
|
|
|
rb_method_type_t
|
|
rb_get_cme_def_type(const rb_callable_method_entry_t *cme)
|
|
{
|
|
if (UNDEFINED_METHOD_ENTRY_P(cme)) {
|
|
return VM_METHOD_TYPE_UNDEF;
|
|
}
|
|
else {
|
|
return cme->def->type;
|
|
}
|
|
}
|
|
|
|
ID
|
|
rb_get_cme_def_body_attr_id(const rb_callable_method_entry_t *cme)
|
|
{
|
|
return cme->def->body.attr.id;
|
|
}
|
|
|
|
enum method_optimized_type
|
|
rb_get_cme_def_body_optimized_type(const rb_callable_method_entry_t *cme)
|
|
{
|
|
return cme->def->body.optimized.type;
|
|
}
|
|
|
|
unsigned int
|
|
rb_get_cme_def_body_optimized_index(const rb_callable_method_entry_t *cme)
|
|
{
|
|
return cme->def->body.optimized.index;
|
|
}
|
|
|
|
rb_method_cfunc_t *
|
|
rb_get_cme_def_body_cfunc(const rb_callable_method_entry_t *cme)
|
|
{
|
|
return UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
|
|
}
|
|
|
|
uintptr_t
|
|
rb_get_def_method_serial(const rb_method_definition_t *def)
|
|
{
|
|
return def->method_serial;
|
|
}
|
|
|
|
ID
|
|
rb_get_def_original_id(const rb_method_definition_t *def)
|
|
{
|
|
return def->original_id;
|
|
}
|
|
|
|
VALUE
|
|
rb_get_def_bmethod_proc(rb_method_definition_t *def)
|
|
{
|
|
RUBY_ASSERT(def->type == VM_METHOD_TYPE_BMETHOD);
|
|
return def->body.bmethod.proc;
|
|
}
|
|
|
|
rb_proc_t *
|
|
rb_jit_get_proc_ptr(VALUE procv)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procv, proc);
|
|
return proc;
|
|
}
|
|
|
|
unsigned int
|
|
rb_jit_iseq_builtin_attrs(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->builtin_attrs;
|
|
}
|
|
|
|
int
|
|
rb_get_mct_argc(const rb_method_cfunc_t *mct)
|
|
{
|
|
return mct->argc;
|
|
}
|
|
|
|
void *
|
|
rb_get_mct_func(const rb_method_cfunc_t *mct)
|
|
{
|
|
return (void*)(uintptr_t)mct->func; // this field is defined as type VALUE (*func)(ANYARGS)
|
|
}
|
|
|
|
const rb_iseq_t *
|
|
rb_get_def_iseq_ptr(rb_method_definition_t *def)
|
|
{
|
|
return def_iseq_ptr(def);
|
|
}
|
|
|
|
const rb_iseq_t *
|
|
rb_get_iseq_body_local_iseq(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->local_iseq;
|
|
}
|
|
|
|
const rb_iseq_t *
|
|
rb_get_iseq_body_parent_iseq(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->parent_iseq;
|
|
}
|
|
|
|
unsigned int
|
|
rb_get_iseq_body_local_table_size(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->local_table_size;
|
|
}
|
|
|
|
VALUE *
|
|
rb_get_iseq_body_iseq_encoded(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->iseq_encoded;
|
|
}
|
|
|
|
unsigned
|
|
rb_get_iseq_body_stack_max(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->stack_max;
|
|
}
|
|
|
|
enum rb_iseq_type
|
|
rb_get_iseq_body_type(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->type;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_has_lead(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.has_lead;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_has_opt(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.has_opt;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_has_kw(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.has_kw;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_has_post(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.has_post;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_has_kwrest(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.has_kwrest;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_anon_kwrest(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.anon_kwrest;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_has_rest(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.has_rest;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_ruby2_keywords(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.ruby2_keywords;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_has_block(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.has_block;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_ambiguous_param0(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.ambiguous_param0;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_accepts_no_kwarg(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.accepts_no_kwarg;
|
|
}
|
|
|
|
bool
|
|
rb_get_iseq_flags_forwardable(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.flags.forwardable;
|
|
}
|
|
|
|
// This is defined only as a named struct inside rb_iseq_constant_body.
|
|
// By giving it a separate typedef, we make it nameable by rust-bindgen.
|
|
// Bindgen's temp/anon name isn't guaranteed stable.
|
|
typedef struct rb_iseq_param_keyword rb_iseq_param_keyword_struct;
|
|
|
|
const rb_iseq_param_keyword_struct *
|
|
rb_get_iseq_body_param_keyword(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.keyword;
|
|
}
|
|
|
|
unsigned
|
|
rb_get_iseq_body_param_size(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.size;
|
|
}
|
|
|
|
int
|
|
rb_get_iseq_body_param_lead_num(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.lead_num;
|
|
}
|
|
|
|
int
|
|
rb_get_iseq_body_param_opt_num(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.opt_num;
|
|
}
|
|
|
|
const VALUE *
|
|
rb_get_iseq_body_param_opt_table(const rb_iseq_t *iseq)
|
|
{
|
|
return iseq->body->param.opt_table;
|
|
}
|
|
|
|
struct rb_control_frame_struct *
|
|
rb_get_ec_cfp(const rb_execution_context_t *ec)
|
|
{
|
|
return ec->cfp;
|
|
}
|
|
|
|
const rb_iseq_t *
|
|
rb_get_cfp_iseq(struct rb_control_frame_struct *cfp)
|
|
{
|
|
return cfp->iseq;
|
|
}
|
|
|
|
VALUE *
|
|
rb_get_cfp_pc(struct rb_control_frame_struct *cfp)
|
|
{
|
|
return (VALUE*)cfp->pc;
|
|
}
|
|
|
|
VALUE *
|
|
rb_get_cfp_sp(struct rb_control_frame_struct *cfp)
|
|
{
|
|
return cfp->sp;
|
|
}
|
|
|
|
VALUE
|
|
rb_get_cfp_self(struct rb_control_frame_struct *cfp)
|
|
{
|
|
return cfp->self;
|
|
}
|
|
|
|
VALUE *
|
|
rb_get_cfp_ep(struct rb_control_frame_struct *cfp)
|
|
{
|
|
return (VALUE*)cfp->ep;
|
|
}
|
|
|
|
const VALUE *
|
|
rb_get_cfp_ep_level(struct rb_control_frame_struct *cfp, uint32_t lv)
|
|
{
|
|
uint32_t i;
|
|
const VALUE *ep = (VALUE*)cfp->ep;
|
|
for (i = 0; i < lv; i++) {
|
|
ep = VM_ENV_PREV_EP(ep);
|
|
}
|
|
return ep;
|
|
}
|
|
|
|
VALUE
|
|
rb_yarv_class_of(VALUE obj)
|
|
{
|
|
return rb_class_of(obj);
|
|
}
|
|
|
|
// The FL_TEST() macro
|
|
VALUE
|
|
rb_FL_TEST(VALUE obj, VALUE flags)
|
|
{
|
|
return RB_FL_TEST(obj, flags);
|
|
}
|
|
|
|
// The FL_TEST_RAW() macro, normally an internal implementation detail
|
|
VALUE
|
|
rb_FL_TEST_RAW(VALUE obj, VALUE flags)
|
|
{
|
|
return FL_TEST_RAW(obj, flags);
|
|
}
|
|
|
|
// The RB_TYPE_P macro
|
|
bool
|
|
rb_RB_TYPE_P(VALUE obj, enum ruby_value_type t)
|
|
{
|
|
return RB_TYPE_P(obj, t);
|
|
}
|
|
|
|
long
|
|
rb_RSTRUCT_LEN(VALUE st)
|
|
{
|
|
return RSTRUCT_LEN(st);
|
|
}
|
|
|
|
const struct rb_callinfo *
|
|
rb_get_call_data_ci(const struct rb_call_data *cd)
|
|
{
|
|
return cd->ci;
|
|
}
|
|
|
|
bool
|
|
rb_BASIC_OP_UNREDEFINED_P(enum ruby_basic_operators bop, uint32_t klass)
|
|
{
|
|
return BASIC_OP_UNREDEFINED_P(bop, klass);
|
|
}
|
|
|
|
VALUE
|
|
rb_RCLASS_ORIGIN(VALUE c)
|
|
{
|
|
return RCLASS_ORIGIN(c);
|
|
}
|
|
|
|
// For debug builds
|
|
void
|
|
rb_assert_iseq_handle(VALUE handle)
|
|
{
|
|
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_iseq));
|
|
}
|
|
|
|
// Assert that we have the VM lock. Relevant mostly for multi ractor situations.
|
|
// The GC takes the lock before calling us, and this asserts that it indeed happens.
|
|
void
|
|
rb_assert_holding_vm_lock(void)
|
|
{
|
|
ASSERT_vm_locking();
|
|
}
|
|
|
|
int
|
|
rb_IMEMO_TYPE_P(VALUE imemo, enum imemo_type imemo_type)
|
|
{
|
|
return IMEMO_TYPE_P(imemo, imemo_type);
|
|
}
|
|
|
|
void
|
|
rb_assert_cme_handle(VALUE handle)
|
|
{
|
|
RUBY_ASSERT_ALWAYS(!rb_objspace_garbage_object_p(handle));
|
|
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_ment));
|
|
}
|
|
|
|
// YJIT and ZJIT need this function to never allocate and never raise
|
|
VALUE
|
|
rb_yarv_ary_entry_internal(VALUE ary, long offset)
|
|
{
|
|
return rb_ary_entry_internal(ary, offset);
|
|
}
|
|
|
|
long
|
|
rb_jit_array_len(VALUE a)
|
|
{
|
|
return rb_array_len(a);
|
|
}
|
|
|
|
void
|
|
rb_set_cfp_pc(struct rb_control_frame_struct *cfp, const VALUE *pc)
|
|
{
|
|
cfp->pc = pc;
|
|
}
|
|
|
|
void
|
|
rb_set_cfp_sp(struct rb_control_frame_struct *cfp, VALUE *sp)
|
|
{
|
|
cfp->sp = sp;
|
|
}
|
|
|
|
bool
|
|
rb_jit_shape_too_complex_p(shape_id_t shape_id)
|
|
{
|
|
return rb_shape_too_complex_p(shape_id);
|
|
}
|
|
|
|
bool
|
|
rb_jit_multi_ractor_p(void)
|
|
{
|
|
return rb_multi_ractor_p();
|
|
}
|
|
|
|
// Acquire the VM lock and then signal all other Ruby threads (ractors) to
|
|
// contend for the VM lock, putting them to sleep. ZJIT and YJIT use this to
|
|
// evict threads running inside generated code so among other things, it can
|
|
// safely change memory protection of regions housing generated code.
|
|
void
|
|
rb_jit_vm_lock_then_barrier(unsigned int *recursive_lock_level, const char *file, int line)
|
|
{
|
|
rb_vm_lock_enter(recursive_lock_level, file, line);
|
|
rb_vm_barrier();
|
|
}
|
|
|
|
// Release the VM lock. The lock level must point to the same integer used to
|
|
// acquire the lock.
|
|
void
|
|
rb_jit_vm_unlock(unsigned int *recursive_lock_level, const char *file, int line)
|
|
{
|
|
rb_vm_lock_leave(recursive_lock_level, file, line);
|
|
}
|
|
|
|
void
|
|
rb_iseq_reset_jit_func(const rb_iseq_t *iseq)
|
|
{
|
|
RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
|
|
iseq->body->jit_entry = NULL;
|
|
iseq->body->jit_exception = NULL;
|
|
// Enable re-compiling this ISEQ. Event when it's invalidated for TracePoint,
|
|
// we'd like to re-compile ISEQs that haven't been converted to trace_* insns.
|
|
iseq->body->jit_entry_calls = 0;
|
|
iseq->body->jit_exception_calls = 0;
|
|
}
|
|
|
|
// Callback data for rb_jit_for_each_iseq
|
|
struct iseq_callback_data {
|
|
rb_iseq_callback callback;
|
|
void *data;
|
|
};
|
|
|
|
// Heap-walking callback for rb_jit_for_each_iseq
|
|
static int
|
|
for_each_iseq_i(void *vstart, void *vend, size_t stride, void *data)
|
|
{
|
|
const struct iseq_callback_data *callback_data = (struct iseq_callback_data *)data;
|
|
VALUE v = (VALUE)vstart;
|
|
for (; v != (VALUE)vend; v += stride) {
|
|
void *ptr = rb_asan_poisoned_object_p(v);
|
|
rb_asan_unpoison_object(v, false);
|
|
|
|
if (rb_obj_is_iseq(v)) {
|
|
rb_iseq_t *iseq = (rb_iseq_t *)v;
|
|
callback_data->callback(iseq, callback_data->data);
|
|
}
|
|
|
|
if (ptr) {
|
|
rb_asan_poison_object(v);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
rb_jit_get_page_size(void)
|
|
{
|
|
#if defined(_SC_PAGESIZE)
|
|
long page_size = sysconf(_SC_PAGESIZE);
|
|
if (page_size <= 0) rb_bug("jit: failed to get page size");
|
|
|
|
// 1 GiB limit. x86 CPUs with PDPE1GB can do this and anything larger is unexpected.
|
|
// Though our design sort of assume we have fine grained control over memory protection
|
|
// which require small page sizes.
|
|
if (page_size > 0x40000000l) rb_bug("jit page size too large");
|
|
|
|
return (uint32_t)page_size;
|
|
#else
|
|
#error "JIT supports POSIX only for now"
|
|
#endif
|
|
}
|
|
|
|
#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
|
|
// Align the current write position to a multiple of bytes
|
|
static uint8_t *
|
|
align_ptr(uint8_t *ptr, uint32_t multiple)
|
|
{
|
|
// Compute the pointer modulo the given alignment boundary
|
|
uint32_t rem = ((uint32_t)(uintptr_t)ptr) % multiple;
|
|
|
|
// If the pointer is already aligned, stop
|
|
if (rem == 0)
|
|
return ptr;
|
|
|
|
// Pad the pointer by the necessary amount to align it
|
|
uint32_t pad = multiple - rem;
|
|
|
|
return ptr + pad;
|
|
}
|
|
#endif
|
|
|
|
// Address space reservation. Memory pages are mapped on an as needed basis.
|
|
// See the Rust mm module for details.
|
|
uint8_t *
|
|
rb_jit_reserve_addr_space(uint32_t mem_size)
|
|
{
|
|
#ifndef _WIN32
|
|
uint8_t *mem_block;
|
|
|
|
// On Linux
|
|
#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
|
|
uint32_t const page_size = (uint32_t)sysconf(_SC_PAGESIZE);
|
|
uint8_t *const cfunc_sample_addr = (void *)(uintptr_t)&rb_jit_reserve_addr_space;
|
|
uint8_t *const probe_region_end = cfunc_sample_addr + INT32_MAX;
|
|
// Align the requested address to page size
|
|
uint8_t *req_addr = align_ptr(cfunc_sample_addr, page_size);
|
|
|
|
// Probe for addresses close to this function using MAP_FIXED_NOREPLACE
|
|
// to improve odds of being in range for 32-bit relative call instructions.
|
|
do {
|
|
mem_block = mmap(
|
|
req_addr,
|
|
mem_size,
|
|
PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE,
|
|
-1,
|
|
0
|
|
);
|
|
|
|
// If we succeeded, stop
|
|
if (mem_block != MAP_FAILED) {
|
|
ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_jit_reserve_addr_space");
|
|
break;
|
|
}
|
|
|
|
// -4MiB. Downwards to probe away from the heap. (On x86/A64 Linux
|
|
// main_code_addr < heap_addr, and in case we are in a shared
|
|
// library mapped higher than the heap, downwards is still better
|
|
// since it's towards the end of the heap rather than the stack.)
|
|
req_addr -= 4 * 1024 * 1024;
|
|
} while (req_addr < probe_region_end);
|
|
|
|
// On MacOS and other platforms
|
|
#else
|
|
// Try to map a chunk of memory as executable
|
|
mem_block = mmap(
|
|
(void *)rb_jit_reserve_addr_space,
|
|
mem_size,
|
|
PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1,
|
|
0
|
|
);
|
|
#endif
|
|
|
|
// Fallback
|
|
if (mem_block == MAP_FAILED) {
|
|
// Try again without the address hint (e.g., valgrind)
|
|
mem_block = mmap(
|
|
NULL,
|
|
mem_size,
|
|
PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1,
|
|
0
|
|
);
|
|
|
|
if (mem_block != MAP_FAILED) {
|
|
ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_jit_reserve_addr_space:fallback");
|
|
}
|
|
}
|
|
|
|
// Check that the memory mapping was successful
|
|
if (mem_block == MAP_FAILED) {
|
|
perror("ruby: jit: mmap:");
|
|
if(errno == ENOMEM) {
|
|
// No crash report if it's only insufficient memory
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
rb_bug("mmap failed");
|
|
}
|
|
|
|
return mem_block;
|
|
#else
|
|
// Windows not supported for now
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
// Walk all ISEQs in the heap and invoke the callback - shared between YJIT and ZJIT
|
|
void
|
|
rb_jit_for_each_iseq(rb_iseq_callback callback, void *data)
|
|
{
|
|
struct iseq_callback_data callback_data = { .callback = callback, .data = data };
|
|
rb_objspace_each_objects(for_each_iseq_i, (void *)&callback_data);
|
|
}
|
|
|
|
bool
|
|
rb_jit_mark_writable(void *mem_block, uint32_t mem_size)
|
|
{
|
|
return mprotect(mem_block, mem_size, PROT_READ | PROT_WRITE) == 0;
|
|
}
|
|
|
|
void
|
|
rb_jit_mark_executable(void *mem_block, uint32_t mem_size)
|
|
{
|
|
// Do not call mprotect when mem_size is zero. Some platforms may return
|
|
// an error for it. https://github.com/Shopify/ruby/issues/450
|
|
if (mem_size == 0) {
|
|
return;
|
|
}
|
|
if (mprotect(mem_block, mem_size, PROT_READ | PROT_EXEC)) {
|
|
rb_bug("Couldn't make JIT page (%p, %lu bytes) executable, errno: %s",
|
|
mem_block, (unsigned long)mem_size, strerror(errno));
|
|
}
|
|
}
|
|
|
|
// Free the specified memory block.
|
|
bool
|
|
rb_jit_mark_unused(void *mem_block, uint32_t mem_size)
|
|
{
|
|
// On Linux, you need to use madvise MADV_DONTNEED to free memory.
|
|
// We might not need to call this on macOS, but it's not really documented.
|
|
// We generally prefer to do the same thing on both to ease testing too.
|
|
madvise(mem_block, mem_size, MADV_DONTNEED);
|
|
|
|
// On macOS, mprotect PROT_NONE seems to reduce RSS.
|
|
// We also call this on Linux to avoid executing unused pages.
|
|
return mprotect(mem_block, mem_size, PROT_NONE) == 0;
|
|
}
|
|
|
|
// Invalidate icache for arm64.
|
|
// `start` is inclusive and `end` is exclusive.
|
|
void
|
|
rb_jit_icache_invalidate(void *start, void *end)
|
|
{
|
|
// Clear/invalidate the instruction cache. Compiles to nothing on x86_64
|
|
// but required on ARM before running freshly written code.
|
|
// On Darwin it's the same as calling sys_icache_invalidate().
|
|
#ifdef __GNUC__
|
|
__builtin___clear_cache(start, end);
|
|
#elif defined(__aarch64__)
|
|
#error No instruction cache clear available with this compiler on Aarch64!
|
|
#endif
|
|
}
|
|
|
|
VALUE
|
|
rb_jit_fix_mod_fix(VALUE recv, VALUE obj)
|
|
{
|
|
return rb_fix_mod_fix(recv, obj);
|
|
}
|
|
|
|
// YJIT/ZJIT need this function to never allocate and never raise
|
|
VALUE
|
|
rb_yarv_str_eql_internal(VALUE str1, VALUE str2)
|
|
{
|
|
// We wrap this since it's static inline
|
|
return rb_str_eql_internal(str1, str2);
|
|
}
|