ruby/set.c
Jeremy Evans 41b8e440e7 Support backwards compatibility for Set subclasses
For subclasses from Set, require `set/subclass_compatible`, and
extend the subclass and include a module in it that makes it more
backwards compatible with the pure Ruby Set implementation used
before Ruby 4.

The module included in the subclass contains a near-copy of the
previous Set implementation, with the following changes:

* Accesses to `@hash` are generally replaced with `super` calls. In
  some cases, they are replaced with a call to another instance method.
* Some methods that only accessed `@hash` and nothing else are not
  defined, so they inherit behavior from core Set.
* The previous `Set#divide` implementation is not used, to avoid
  depending on tsort.

This fixes the following two issues:

* [Bug #21375] Set[] does not call #initialize
* [Bug #21396] Set#initialize should call Set#add on items passed in

It should also fix the vast majority of backwards compatibility issues
in other cases where code subclassed Set and depended on implementation
details (such as which methods call which other methods).

This does not affect Set internals, so Set itself remains fast. For
users who want to subclass Set but do not need to worry about
backwards compatibility, they can subclass from Set::CoreSet, a Set
subclass that does not have the backward compatibility layer included.
2025-11-20 23:54:29 +09:00

2284 lines
58 KiB
C

/* This implements sets using the same hash table implementation as in
st.c, but without a value for each hash entry. This results in the
same basic performance characteristics as when using an st table,
but uses 1/3 less memory.
*/
#include "id.h"
#include "internal.h"
#include "internal/bits.h"
#include "internal/error.h"
#include "internal/hash.h"
#include "internal/proc.h"
#include "internal/sanitizers.h"
#include "internal/set_table.h"
#include "internal/symbol.h"
#include "internal/variable.h"
#include "ruby_assert.h"
#include <stdio.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <string.h>
#ifndef SET_DEBUG
#define SET_DEBUG 0
#endif
#if SET_DEBUG
#include "internal/gc.h"
#endif
static st_index_t
dbl_to_index(double d)
{
union {double d; st_index_t i;} u;
u.d = d;
return u.i;
}
static const uint64_t prime1 = ((uint64_t)0x2e0bb864 << 32) | 0xe9ea7df5;
static const uint32_t prime2 = 0x830fcab9;
static inline uint64_t
mult_and_mix(uint64_t m1, uint64_t m2)
{
#if defined HAVE_UINT128_T
uint128_t r = (uint128_t) m1 * (uint128_t) m2;
return (uint64_t) (r >> 64) ^ (uint64_t) r;
#else
uint64_t hm1 = m1 >> 32, hm2 = m2 >> 32;
uint64_t lm1 = m1, lm2 = m2;
uint64_t v64_128 = hm1 * hm2;
uint64_t v32_96 = hm1 * lm2 + lm1 * hm2;
uint64_t v1_32 = lm1 * lm2;
return (v64_128 + (v32_96 >> 32)) ^ ((v32_96 << 32) + v1_32);
#endif
}
static inline uint64_t
key64_hash(uint64_t key, uint32_t seed)
{
return mult_and_mix(key + seed, prime1);
}
/* Should cast down the result for each purpose */
#define set_index_hash(index) key64_hash(rb_hash_start(index), prime2)
static st_index_t
set_ident_hash(st_data_t n)
{
#ifdef USE_FLONUM /* RUBY */
/*
* - flonum (on 64-bit) is pathologically bad, mix the actual
* float value in, but do not use the float value as-is since
* many integers get interpreted as 2.0 or -2.0 [Bug #10761]
*/
if (FLONUM_P(n)) {
n ^= dbl_to_index(rb_float_value(n));
}
#endif
return (st_index_t)set_index_hash((st_index_t)n);
}
static const struct st_hash_type identhash = {
rb_st_numcmp,
set_ident_hash,
};
static const struct st_hash_type objhash = {
rb_any_cmp,
rb_any_hash,
};
VALUE rb_cSet;
#define id_each idEach
static ID id_each_entry;
static ID id_any_p;
static ID id_new;
static ID id_i_hash;
static ID id_set_iter_lev;
static ID id_subclass_compatible;
static ID id_class_methods;
#define RSET_INITIALIZED FL_USER1
#define RSET_LEV_MASK (FL_USER13 | FL_USER14 | FL_USER15 | /* FL 13..19 */ \
FL_USER16 | FL_USER17 | FL_USER18 | FL_USER19)
#define RSET_LEV_SHIFT (FL_USHIFT + 13)
#define RSET_LEV_MAX 127 /* 7 bits */
#define SET_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(SET_DEBUG, expr, #expr)
#define RSET_SIZE(set) set_table_size(RSET_TABLE(set))
#define RSET_EMPTY(set) (RSET_SIZE(set) == 0)
#define RSET_SIZE_NUM(set) SIZET2NUM(RSET_SIZE(set))
#define RSET_IS_MEMBER(sobj, item) set_table_lookup(RSET_TABLE(set), (st_data_t)(item))
#define RSET_COMPARE_BY_IDENTITY(set) (RSET_TABLE(set)->type == &identhash)
struct set_object {
set_table table;
};
static int
mark_key(st_data_t key, st_data_t data)
{
rb_gc_mark_movable((VALUE)key);
return ST_CONTINUE;
}
static void
set_mark(void *ptr)
{
struct set_object *sobj = ptr;
if (sobj->table.entries) set_table_foreach(&sobj->table, mark_key, 0);
}
static void
set_free_embedded(struct set_object *sobj)
{
free((&sobj->table)->entries);
}
static void
set_free(void *ptr)
{
struct set_object *sobj = ptr;
set_free_embedded(sobj);
memset(&sobj->table, 0, sizeof(sobj->table));
}
static size_t
set_size(const void *ptr)
{
const struct set_object *sobj = ptr;
/* Do not count the table size twice, as it is embedded */
return (unsigned long)set_memsize(&sobj->table) - sizeof(sobj->table);
}
static int
set_foreach_replace(st_data_t key, st_data_t argp, int error)
{
if (rb_gc_location((VALUE)key) != (VALUE)key) {
return ST_REPLACE;
}
return ST_CONTINUE;
}
static int
set_replace_ref(st_data_t *key, st_data_t argp, int existing)
{
rb_gc_mark_and_move((VALUE *)key);
return ST_CONTINUE;
}
static void
set_update_references(void *ptr)
{
struct set_object *sobj = ptr;
set_foreach_with_replace(&sobj->table, set_foreach_replace, set_replace_ref, 0);
}
static const rb_data_type_t set_data_type = {
.wrap_struct_name = "set",
.function = {
.dmark = set_mark,
.dfree = set_free,
.dsize = set_size,
.dcompact = set_update_references,
},
.flags = RUBY_TYPED_EMBEDDABLE | RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FROZEN_SHAREABLE
};
static inline set_table *
RSET_TABLE(VALUE set)
{
struct set_object *sobj;
TypedData_Get_Struct(set, struct set_object, &set_data_type, sobj);
return &sobj->table;
}
static unsigned long
iter_lev_in_ivar(VALUE set)
{
VALUE levval = rb_ivar_get(set, id_set_iter_lev);
SET_ASSERT(FIXNUM_P(levval));
long lev = FIX2LONG(levval);
SET_ASSERT(lev >= 0);
return (unsigned long)lev;
}
void rb_ivar_set_internal(VALUE obj, ID id, VALUE val);
static void
iter_lev_in_ivar_set(VALUE set, unsigned long lev)
{
SET_ASSERT(lev >= RSET_LEV_MAX);
SET_ASSERT(POSFIXABLE(lev)); /* POSFIXABLE means fitting to long */
rb_ivar_set_internal(set, id_set_iter_lev, LONG2FIX((long)lev));
}
static inline unsigned long
iter_lev_in_flags(VALUE set)
{
return (unsigned long)((RBASIC(set)->flags >> RSET_LEV_SHIFT) & RSET_LEV_MAX);
}
static inline void
iter_lev_in_flags_set(VALUE set, unsigned long lev)
{
SET_ASSERT(lev <= RSET_LEV_MAX);
RBASIC(set)->flags = ((RBASIC(set)->flags & ~RSET_LEV_MASK) | ((VALUE)lev << RSET_LEV_SHIFT));
}
static inline bool
set_iterating_p(VALUE set)
{
return iter_lev_in_flags(set) > 0;
}
static void
set_iter_lev_inc(VALUE set)
{
unsigned long lev = iter_lev_in_flags(set);
if (lev == RSET_LEV_MAX) {
lev = iter_lev_in_ivar(set) + 1;
if (!POSFIXABLE(lev)) { /* paranoiac check */
rb_raise(rb_eRuntimeError, "too much nested iterations");
}
}
else {
lev += 1;
iter_lev_in_flags_set(set, lev);
if (lev < RSET_LEV_MAX) return;
}
iter_lev_in_ivar_set(set, lev);
}
static void
set_iter_lev_dec(VALUE set)
{
unsigned long lev = iter_lev_in_flags(set);
if (lev == RSET_LEV_MAX) {
lev = iter_lev_in_ivar(set);
if (lev > RSET_LEV_MAX) {
iter_lev_in_ivar_set(set, lev-1);
return;
}
rb_attr_delete(set, id_set_iter_lev);
}
else if (lev == 0) {
rb_raise(rb_eRuntimeError, "iteration level underflow");
}
iter_lev_in_flags_set(set, lev - 1);
}
static VALUE
set_foreach_ensure(VALUE set)
{
set_iter_lev_dec(set);
return 0;
}
typedef int set_foreach_func(VALUE, VALUE);
struct set_foreach_arg {
VALUE set;
set_foreach_func *func;
VALUE arg;
};
static int
set_iter_status_check(int status)
{
if (status == ST_CONTINUE) {
return ST_CHECK;
}
return status;
}
static int
set_foreach_iter(st_data_t key, st_data_t argp, int error)
{
struct set_foreach_arg *arg = (struct set_foreach_arg *)argp;
if (error) return ST_STOP;
set_table *tbl = RSET_TABLE(arg->set);
int status = (*arg->func)((VALUE)key, arg->arg);
if (RSET_TABLE(arg->set) != tbl) {
rb_raise(rb_eRuntimeError, "reset occurred during iteration");
}
return set_iter_status_check(status);
}
static VALUE
set_foreach_call(VALUE arg)
{
VALUE set = ((struct set_foreach_arg *)arg)->set;
int ret = 0;
ret = set_foreach_check(RSET_TABLE(set), set_foreach_iter,
(st_data_t)arg, (st_data_t)Qundef);
if (ret) {
rb_raise(rb_eRuntimeError, "ret: %d, set modified during iteration", ret);
}
return Qnil;
}
static void
set_iter(VALUE set, set_foreach_func *func, VALUE farg)
{
struct set_foreach_arg arg;
if (RSET_EMPTY(set))
return;
arg.set = set;
arg.func = func;
arg.arg = farg;
if (RB_OBJ_FROZEN(set)) {
set_foreach_call((VALUE)&arg);
}
else {
set_iter_lev_inc(set);
rb_ensure(set_foreach_call, (VALUE)&arg, set_foreach_ensure, set);
}
}
NORETURN(static void no_new_item(void));
static void
no_new_item(void)
{
rb_raise(rb_eRuntimeError, "can't add a new item into set during iteration");
}
static void
set_compact_after_delete(VALUE set)
{
if (!set_iterating_p(set)) {
set_compact_table(RSET_TABLE(set));
}
}
static int
set_table_insert_wb(set_table *tab, VALUE set, VALUE key, VALUE *key_addr)
{
if (tab->type != &identhash && rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) {
key = rb_hash_key_str(key);
if (key_addr) *key_addr = key;
}
int ret = set_insert(tab, (st_data_t)key);
if (ret == 0) RB_OBJ_WRITTEN(set, Qundef, key);
return ret;
}
static int
set_insert_wb(VALUE set, VALUE key, VALUE *key_addr)
{
return set_table_insert_wb(RSET_TABLE(set), set, key, key_addr);
}
static VALUE
set_alloc_with_size(VALUE klass, st_index_t size)
{
VALUE set;
struct set_object *sobj;
set = TypedData_Make_Struct(klass, struct set_object, &set_data_type, sobj);
set_init_table_with_size(&sobj->table, &objhash, size);
return set;
}
static VALUE
set_s_alloc(VALUE klass)
{
return set_alloc_with_size(klass, 0);
}
/*
* call-seq:
* Set[*objects] -> new_set
*
* Returns a new Set object populated with the given objects,
* See Set::new.
*/
static VALUE
set_s_create(int argc, VALUE *argv, VALUE klass)
{
VALUE set = set_alloc_with_size(klass, argc);
set_table *table = RSET_TABLE(set);
int i;
for (i=0; i < argc; i++) {
set_table_insert_wb(table, set, argv[i], NULL);
}
return set;
}
static VALUE
set_s_inherited(VALUE klass, VALUE subclass)
{
if (klass == rb_cSet) {
// When subclassing directly from Set, include the compatibility layer
rb_require("set/subclass_compatible.rb");
VALUE subclass_compatible = rb_const_get(klass, id_subclass_compatible);
rb_include_module(subclass, subclass_compatible);
rb_extend_object(subclass, rb_const_get(subclass_compatible, id_class_methods));
}
return Qnil;
}
static void
check_set(VALUE arg)
{
if (!rb_obj_is_kind_of(arg, rb_cSet)) {
rb_raise(rb_eArgError, "value must be a set");
}
}
static ID
enum_method_id(VALUE other)
{
if (rb_respond_to(other, id_each_entry)) {
return id_each_entry;
}
else if (rb_respond_to(other, id_each)) {
return id_each;
}
else {
rb_raise(rb_eArgError, "value must be enumerable");
}
}
static VALUE
set_enum_size(VALUE set, VALUE args, VALUE eobj)
{
return RSET_SIZE_NUM(set);
}
static VALUE
set_initialize_without_block(RB_BLOCK_CALL_FUNC_ARGLIST(i, set))
{
VALUE element = i;
set_insert_wb(set, element, &element);
return element;
}
static VALUE
set_initialize_with_block(RB_BLOCK_CALL_FUNC_ARGLIST(i, set))
{
VALUE element = rb_yield(i);
set_insert_wb(set, element, &element);
return element;
}
/*
* call-seq:
* Set.new -> new_set
* Set.new(enum) -> new_set
* Set.new(enum) { |elem| ... } -> new_set
*
* Creates a new set containing the elements of the given enumerable
* object.
*
* If a block is given, the elements of enum are preprocessed by the
* given block.
*
* Set.new([1, 2]) #=> #<Set: {1, 2}>
* Set.new([1, 2, 1]) #=> #<Set: {1, 2}>
* Set.new([1, 'c', :s]) #=> #<Set: {1, "c", :s}>
* Set.new(1..5) #=> #<Set: {1, 2, 3, 4, 5}>
* Set.new([1, 2, 3]) { |x| x * x } #=> #<Set: {1, 4, 9}>
*/
static VALUE
set_i_initialize(int argc, VALUE *argv, VALUE set)
{
if (RBASIC(set)->flags & RSET_INITIALIZED) {
rb_raise(rb_eRuntimeError, "cannot reinitialize set");
}
RBASIC(set)->flags |= RSET_INITIALIZED;
VALUE other;
rb_check_arity(argc, 0, 1);
if (argc > 0 && (other = argv[0]) != Qnil) {
if (RB_TYPE_P(other, T_ARRAY)) {
long i;
int block_given = rb_block_given_p();
set_table *into = RSET_TABLE(set);
for (i=0; i<RARRAY_LEN(other); i++) {
VALUE key = RARRAY_AREF(other, i);
if (block_given) key = rb_yield(key);
set_table_insert_wb(into, set, key, NULL);
}
}
else {
rb_block_call(other, enum_method_id(other), 0, 0,
rb_block_given_p() ? set_initialize_with_block : set_initialize_without_block,
set);
}
}
return set;
}
/* :nodoc: */
static VALUE
set_i_initialize_copy(VALUE set, VALUE other)
{
if (set == other) return set;
if (set_iterating_p(set)) {
rb_raise(rb_eRuntimeError, "cannot replace set during iteration");
}
struct set_object *sobj;
TypedData_Get_Struct(set, struct set_object, &set_data_type, sobj);
set_free_embedded(sobj);
set_copy(&sobj->table, RSET_TABLE(other));
rb_gc_writebarrier_remember(set);
return set;
}
static int
set_inspect_i(st_data_t key, st_data_t arg)
{
VALUE *args = (VALUE*)arg;
VALUE str = args[0];
if (args[1] == Qtrue) {
rb_str_buf_cat_ascii(str, ", ");
}
else {
args[1] = Qtrue;
}
rb_str_buf_append(str, rb_inspect((VALUE)key));
return ST_CONTINUE;
}
static VALUE
set_inspect(VALUE set, VALUE dummy, int recur)
{
VALUE str;
VALUE klass_name = rb_class_path(CLASS_OF(set));
if (recur) {
str = rb_sprintf("%"PRIsVALUE"[...]", klass_name);
return rb_str_export_to_enc(str, rb_usascii_encoding());
}
str = rb_sprintf("%"PRIsVALUE"[", klass_name);
VALUE args[2] = {str, Qfalse};
set_iter(set, set_inspect_i, (st_data_t)args);
rb_str_buf_cat2(str, "]");
return str;
}
/*
* call-seq:
* inspect -> new_string
*
* Returns a new string containing the set entries:
*
* s = Set.new
* s.inspect # => "#<Set: {}>"
* s.add(1)
* s.inspect # => "#<Set: {1}>"
* s.add(2)
* s.inspect # => "#<Set: {1, 2}>"
*
* Related: see {Methods for Converting}[rdoc-ref:Set@Methods+for+Converting].
*/
static VALUE
set_i_inspect(VALUE set)
{
return rb_exec_recursive(set_inspect, set, 0);
}
static int
set_to_a_i(st_data_t key, st_data_t arg)
{
rb_ary_push((VALUE)arg, (VALUE)key);
return ST_CONTINUE;
}
/*
* call-seq:
* to_a -> array
*
* Returns an array containing all elements in the set.
*
* Set[1, 2].to_a #=> [1, 2]
* Set[1, 'c', :s].to_a #=> [1, "c", :s]
*/
static VALUE
set_i_to_a(VALUE set)
{
st_index_t size = RSET_SIZE(set);
VALUE ary = rb_ary_new_capa(size);
if (size == 0) return ary;
if (ST_DATA_COMPATIBLE_P(VALUE)) {
RARRAY_PTR_USE(ary, ptr, {
size = set_keys(RSET_TABLE(set), ptr, size);
});
rb_gc_writebarrier_remember(ary);
rb_ary_set_len(ary, size);
}
else {
set_iter(set, set_to_a_i, (st_data_t)ary);
}
return ary;
}
/*
* call-seq:
* to_set(klass = Set, *args, &block) -> self or new_set
*
* Returns self if receiver is an instance of +Set+ and no arguments or
* block are given. Otherwise, converts the set to another with
* <tt>klass.new(self, *args, &block)</tt>.
*
* In subclasses, returns `klass.new(self, *args, &block)` unless overridden.
*/
static VALUE
set_i_to_set(int argc, VALUE *argv, VALUE set)
{
VALUE klass;
if (argc == 0) {
klass = rb_cSet;
argv = &set;
argc = 1;
}
else {
rb_warn_deprecated("passing arguments to Set#to_set", NULL);
klass = argv[0];
argv[0] = set;
}
if (klass == rb_cSet && rb_obj_is_instance_of(set, rb_cSet) &&
argc == 1 && !rb_block_given_p()) {
return set;
}
return rb_funcall_passing_block(klass, id_new, argc, argv);
}
/*
* call-seq:
* join(separator=nil)-> new_string
*
* Returns a string created by converting each element of the set to a string.
*/
static VALUE
set_i_join(int argc, VALUE *argv, VALUE set)
{
rb_check_arity(argc, 0, 1);
return rb_ary_join(set_i_to_a(set), argc == 0 ? Qnil : argv[0]);
}
/*
* call-seq:
* add(obj) -> self
*
* Adds the given object to the set and returns self. Use `merge` to
* add many elements at once.
*
* Set[1, 2].add(3) #=> #<Set: {1, 2, 3}>
* Set[1, 2].add([3, 4]) #=> #<Set: {1, 2, [3, 4]}>
* Set[1, 2].add(2) #=> #<Set: {1, 2}>
*/
static VALUE
set_i_add(VALUE set, VALUE item)
{
rb_check_frozen(set);
if (set_iterating_p(set)) {
if (!set_table_lookup(RSET_TABLE(set), (st_data_t)item)) {
no_new_item();
}
}
else {
set_insert_wb(set, item, NULL);
}
return set;
}
/*
* call-seq:
* add?(obj) -> self or nil
*
* Adds the given object to the set and returns self. If the object is
* already in the set, returns nil.
*
* Set[1, 2].add?(3) #=> #<Set: {1, 2, 3}>
* Set[1, 2].add?([3, 4]) #=> #<Set: {1, 2, [3, 4]}>
* Set[1, 2].add?(2) #=> nil
*/
static VALUE
set_i_add_p(VALUE set, VALUE item)
{
rb_check_frozen(set);
if (set_iterating_p(set)) {
if (!set_table_lookup(RSET_TABLE(set), (st_data_t)item)) {
no_new_item();
}
return Qnil;
}
else {
return set_insert_wb(set, item, NULL) ? Qnil : set;
}
}
/*
* call-seq:
* delete(obj) -> self
*
* Deletes the given object from the set and returns self. Use subtract
* to delete many items at once.
*/
static VALUE
set_i_delete(VALUE set, VALUE item)
{
rb_check_frozen(set);
if (set_table_delete(RSET_TABLE(set), (st_data_t *)&item)) {
set_compact_after_delete(set);
}
return set;
}
/*
* call-seq:
* delete?(obj) -> self or nil
*
* Deletes the given object from the set and returns self. If the
* object is not in the set, returns nil.
*/
static VALUE
set_i_delete_p(VALUE set, VALUE item)
{
rb_check_frozen(set);
if (set_table_delete(RSET_TABLE(set), (st_data_t *)&item)) {
set_compact_after_delete(set);
return set;
}
return Qnil;
}
static int
set_delete_if_i(st_data_t key, st_data_t dummy)
{
return RTEST(rb_yield((VALUE)key)) ? ST_DELETE : ST_CONTINUE;
}
/*
* call-seq:
* delete_if { |o| ... } -> self
* delete_if -> enumerator
*
* Deletes every element of the set for which block evaluates to
* true, and returns self. Returns an enumerator if no block is given.
*/
static VALUE
set_i_delete_if(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
set_iter(set, set_delete_if_i, 0);
set_compact_after_delete(set);
return set;
}
/*
* call-seq:
* reject! { |o| ... } -> self
* reject! -> enumerator
*
* Equivalent to Set#delete_if, but returns nil if no changes were made.
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_reject(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
set_table *table = RSET_TABLE(set);
size_t n = set_table_size(table);
set_iter(set, set_delete_if_i, 0);
if (n == set_table_size(table)) return Qnil;
set_compact_after_delete(set);
return set;
}
static int
set_classify_i(st_data_t key, st_data_t tmp)
{
VALUE* args = (VALUE*)tmp;
VALUE hash = args[0];
VALUE hash_key = rb_yield(key);
VALUE set = rb_hash_lookup2(hash, hash_key, Qundef);
if (set == Qundef) {
set = set_s_alloc(args[1]);
rb_hash_aset(hash, hash_key, set);
}
set_i_add(set, key);
return ST_CONTINUE;
}
/*
* call-seq:
* classify { |o| ... } -> hash
* classify -> enumerator
*
* Classifies the set by the return value of the given block and
* returns a hash of {value => set of elements} pairs. The block is
* called once for each element of the set, passing the element as
* parameter.
*
* files = Set.new(Dir.glob("*.rb"))
* hash = files.classify { |f| File.mtime(f).year }
* hash #=> {2000 => #<Set: {"a.rb", "b.rb"}>,
* # 2001 => #<Set: {"c.rb", "d.rb", "e.rb"}>,
* # 2002 => #<Set: {"f.rb"}>}
*
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_classify(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
VALUE args[2];
args[0] = rb_hash_new();
args[1] = rb_obj_class(set);
set_iter(set, set_classify_i, (st_data_t)args);
return args[0];
}
// Union-find with path compression
static long
set_divide_union_find_root(long *uf_parents, long index, long *tmp_array)
{
long root = uf_parents[index];
long update_size = 0;
while (root != index) {
tmp_array[update_size++] = index;
index = root;
root = uf_parents[index];
}
for (long j = 0; j < update_size; j++) {
long idx = tmp_array[j];
uf_parents[idx] = root;
}
return root;
}
static void
set_divide_union_find_merge(long *uf_parents, long i, long j, long *tmp_array)
{
long root_i = set_divide_union_find_root(uf_parents, i, tmp_array);
long root_j = set_divide_union_find_root(uf_parents, j, tmp_array);
if (root_i != root_j) uf_parents[root_j] = root_i;
}
static VALUE
set_divide_arity2(VALUE set)
{
VALUE tmp, uf;
long size, *uf_parents, *tmp_array;
VALUE set_class = rb_obj_class(set);
VALUE items = set_i_to_a(set);
rb_ary_freeze(items);
size = RARRAY_LEN(items);
tmp_array = ALLOCV_N(long, tmp, size);
uf_parents = ALLOCV_N(long, uf, size);
for (long i = 0; i < size; i++) {
uf_parents[i] = i;
}
for (long i = 0; i < size - 1; i++) {
VALUE item1 = RARRAY_AREF(items, i);
for (long j = i + 1; j < size; j++) {
VALUE item2 = RARRAY_AREF(items, j);
if (RTEST(rb_yield_values(2, item1, item2)) &&
RTEST(rb_yield_values(2, item2, item1))) {
set_divide_union_find_merge(uf_parents, i, j, tmp_array);
}
}
}
VALUE final_set = set_s_create(0, 0, rb_cSet);
VALUE hash = rb_hash_new();
for (long i = 0; i < size; i++) {
VALUE v = RARRAY_AREF(items, i);
long root = set_divide_union_find_root(uf_parents, i, tmp_array);
VALUE set = rb_hash_aref(hash, LONG2FIX(root));
if (set == Qnil) {
set = set_s_create(0, 0, set_class);
rb_hash_aset(hash, LONG2FIX(root), set);
set_i_add(final_set, set);
}
set_i_add(set, v);
}
ALLOCV_END(tmp);
ALLOCV_END(uf);
return final_set;
}
static void set_merge_enum_into(VALUE set, VALUE arg);
/*
* call-seq:
* divide { |o1, o2| ... } -> set
* divide { |o| ... } -> set
* divide -> enumerator
*
* Divides the set into a set of subsets according to the commonality
* defined by the given block.
*
* If the arity of the block is 2, elements o1 and o2 are in common
* if both block.call(o1, o2) and block.call(o2, o1) are true.
* Otherwise, elements o1 and o2 are in common if
* block.call(o1) == block.call(o2).
*
* numbers = Set[1, 3, 4, 6, 9, 10, 11]
* set = numbers.divide { |i,j| (i - j).abs == 1 }
* set #=> #<Set: {#<Set: {1}>,
* # #<Set: {3, 4}>,
* # #<Set: {6}>}>
* # #<Set: {9, 10, 11}>,
*
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_divide(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
if (rb_block_arity() == 2) {
return set_divide_arity2(set);
}
VALUE values = rb_hash_values(set_i_classify(set));
set = set_alloc_with_size(rb_cSet, RARRAY_LEN(values));
set_merge_enum_into(set, values);
return set;
}
static int
set_clear_i(st_data_t key, st_data_t dummy)
{
return ST_DELETE;
}
/*
* call-seq:
* clear -> self
*
* Removes all elements and returns self.
*
* set = Set[1, 'c', :s] #=> #<Set: {1, "c", :s}>
* set.clear #=> #<Set: {}>
* set #=> #<Set: {}>
*/
static VALUE
set_i_clear(VALUE set)
{
rb_check_frozen(set);
if (RSET_SIZE(set) == 0) return set;
if (set_iterating_p(set)) {
set_iter(set, set_clear_i, 0);
}
else {
set_table_clear(RSET_TABLE(set));
set_compact_after_delete(set);
}
return set;
}
struct set_intersection_data {
VALUE set;
set_table *into;
set_table *other;
};
static int
set_intersection_i(st_data_t key, st_data_t tmp)
{
struct set_intersection_data *data = (struct set_intersection_data *)tmp;
if (set_table_lookup(data->other, key)) {
set_table_insert_wb(data->into, data->set, key, NULL);
}
return ST_CONTINUE;
}
static VALUE
set_intersection_block(RB_BLOCK_CALL_FUNC_ARGLIST(i, data))
{
set_intersection_i((st_data_t)i, (st_data_t)data);
return i;
}
/*
* call-seq:
* set & enum -> new_set
*
* Returns a new set containing elements common to the set and the given
* enumerable object.
*
* Set[1, 3, 5] & Set[3, 2, 1] #=> #<Set: {3, 1}>
* Set['a', 'b', 'z'] & ['a', 'b', 'c'] #=> #<Set: {"a", "b"}>
*/
static VALUE
set_i_intersection(VALUE set, VALUE other)
{
VALUE new_set = set_s_alloc(rb_obj_class(set));
set_table *stable = RSET_TABLE(set);
set_table *ntable = RSET_TABLE(new_set);
if (rb_obj_is_kind_of(other, rb_cSet)) {
set_table *otable = RSET_TABLE(other);
if (set_table_size(stable) >= set_table_size(otable)) {
/* Swap so we iterate over the smaller set */
otable = stable;
set = other;
}
struct set_intersection_data data = {
.set = new_set,
.into = ntable,
.other = otable
};
set_iter(set, set_intersection_i, (st_data_t)&data);
}
else {
struct set_intersection_data data = {
.set = new_set,
.into = ntable,
.other = stable
};
rb_block_call(other, enum_method_id(other), 0, 0, set_intersection_block, (VALUE)&data);
}
return new_set;
}
/*
* call-seq:
* include?(item) -> true or false
*
* Returns true if the set contains the given object:
*
* Set[1, 2, 3].include? 2 #=> true
* Set[1, 2, 3].include? 4 #=> false
*
* Note that <code>include?</code> and <code>member?</code> do not test member
* equality using <code>==</code> as do other Enumerables.
*
* This is aliased to #===, so it is usable in +case+ expressions:
*
* case :apple
* when Set[:potato, :carrot]
* "vegetable"
* when Set[:apple, :banana]
* "fruit"
* end
* # => "fruit"
*
* See also Enumerable#include?
*/
static VALUE
set_i_include(VALUE set, VALUE item)
{
return RBOOL(RSET_IS_MEMBER(set, item));
}
struct set_merge_args {
VALUE set;
set_table *into;
};
static int
set_merge_i(st_data_t key, st_data_t data)
{
struct set_merge_args *args = (struct set_merge_args *)data;
set_table_insert_wb(args->into, args->set, key, NULL);
return ST_CONTINUE;
}
static VALUE
set_merge_block(RB_BLOCK_CALL_FUNC_ARGLIST(key, set))
{
VALUE element = key;
set_insert_wb(set, element, &element);
return element;
}
static void
set_merge_enum_into(VALUE set, VALUE arg)
{
if (rb_obj_is_kind_of(arg, rb_cSet)) {
struct set_merge_args args = {
.set = set,
.into = RSET_TABLE(set)
};
set_iter(arg, set_merge_i, (st_data_t)&args);
}
else if (RB_TYPE_P(arg, T_ARRAY)) {
long i;
set_table *into = RSET_TABLE(set);
for (i=0; i<RARRAY_LEN(arg); i++) {
set_table_insert_wb(into, set, RARRAY_AREF(arg, i), NULL);
}
}
else {
rb_block_call(arg, enum_method_id(arg), 0, 0, set_merge_block, (VALUE)set);
}
}
/*
* call-seq:
* merge(*enums, **nil) -> self
*
* Merges the elements of the given enumerable objects to the set and
* returns self.
*/
static VALUE
set_i_merge(int argc, VALUE *argv, VALUE set)
{
if (rb_keyword_given_p()) {
rb_raise(rb_eArgError, "no keywords accepted");
}
if (set_iterating_p(set)) {
rb_raise(rb_eRuntimeError, "cannot add to set during iteration");
}
rb_check_frozen(set);
int i;
for (i=0; i < argc; i++) {
set_merge_enum_into(set, argv[i]);
}
return set;
}
static VALUE
set_reset_table_with_type(VALUE set, const struct st_hash_type *type)
{
rb_check_frozen(set);
struct set_object *sobj;
TypedData_Get_Struct(set, struct set_object, &set_data_type, sobj);
set_table *old = &sobj->table;
size_t size = set_table_size(old);
if (size > 0) {
set_table *new = set_init_table_with_size(NULL, type, size);
struct set_merge_args args = {
.set = set,
.into = new
};
set_iter(set, set_merge_i, (st_data_t)&args);
set_free_embedded(sobj);
memcpy(&sobj->table, new, sizeof(*new));
free(new);
}
else {
sobj->table.type = type;
}
return set;
}
/*
* call-seq:
* compare_by_identity -> self
*
* Makes the set compare its elements by their identity and returns self.
*/
static VALUE
set_i_compare_by_identity(VALUE set)
{
if (RSET_COMPARE_BY_IDENTITY(set)) return set;
if (set_iterating_p(set)) {
rb_raise(rb_eRuntimeError, "compare_by_identity during iteration");
}
return set_reset_table_with_type(set, &identhash);
}
/*
* call-seq:
* compare_by_identity? -> true or false
*
* Returns true if the set will compare its elements by their
* identity. Also see Set#compare_by_identity.
*/
static VALUE
set_i_compare_by_identity_p(VALUE set)
{
return RBOOL(RSET_COMPARE_BY_IDENTITY(set));
}
/*
* call-seq:
* size -> integer
*
* Returns the number of elements.
*/
static VALUE
set_i_size(VALUE set)
{
return RSET_SIZE_NUM(set);
}
/*
* call-seq:
* empty? -> true or false
*
* Returns true if the set contains no elements.
*/
static VALUE
set_i_empty(VALUE set)
{
return RBOOL(RSET_EMPTY(set));
}
static int
set_xor_i(st_data_t key, st_data_t data)
{
VALUE element = (VALUE)key;
VALUE set = (VALUE)data;
set_table *table = RSET_TABLE(set);
if (set_table_insert_wb(table, set, element, &element)) {
set_table_delete(table, &element);
}
return ST_CONTINUE;
}
/*
* call-seq:
* set ^ enum -> new_set
*
* Returns a new set containing elements exclusive between the set and the
* given enumerable object. <tt>(set ^ enum)</tt> is equivalent to
* <tt>((set | enum) - (set & enum))</tt>.
*
* Set[1, 2] ^ Set[2, 3] #=> #<Set: {3, 1}>
* Set[1, 'b', 'c'] ^ ['b', 'd'] #=> #<Set: {"d", 1, "c"}>
*/
static VALUE
set_i_xor(VALUE set, VALUE other)
{
VALUE new_set;
if (rb_obj_is_kind_of(other, rb_cSet)) {
new_set = other;
}
else {
new_set = set_s_alloc(rb_obj_class(set));
set_merge_enum_into(new_set, other);
}
set_iter(set, set_xor_i, (st_data_t)new_set);
return new_set;
}
/*
* call-seq:
* set | enum -> new_set
*
* Returns a new set built by merging the set and the elements of the
* given enumerable object.
*
* Set[1, 2, 3] | Set[2, 4, 5] #=> #<Set: {1, 2, 3, 4, 5}>
* Set[1, 5, 'z'] | (1..6) #=> #<Set: {1, 5, "z", 2, 3, 4, 6}>
*/
static VALUE
set_i_union(VALUE set, VALUE other)
{
set = rb_obj_dup(set);
set_merge_enum_into(set, other);
return set;
}
static int
set_remove_i(st_data_t key, st_data_t from)
{
set_table_delete((struct set_table *)from, (st_data_t *)&key);
return ST_CONTINUE;
}
static VALUE
set_remove_block(RB_BLOCK_CALL_FUNC_ARGLIST(key, set))
{
rb_check_frozen(set);
set_table_delete(RSET_TABLE(set), (st_data_t *)&key);
return key;
}
static void
set_remove_enum_from(VALUE set, VALUE arg)
{
if (rb_obj_is_kind_of(arg, rb_cSet)) {
set_iter(arg, set_remove_i, (st_data_t)RSET_TABLE(set));
}
else {
rb_block_call(arg, enum_method_id(arg), 0, 0, set_remove_block, (VALUE)set);
}
}
/*
* call-seq:
* subtract(enum) -> self
*
* Deletes every element that appears in the given enumerable object
* and returns self.
*/
static VALUE
set_i_subtract(VALUE set, VALUE other)
{
rb_check_frozen(set);
set_remove_enum_from(set, other);
return set;
}
/*
* call-seq:
* set - enum -> new_set
*
* Returns a new set built by duplicating the set, removing every
* element that appears in the given enumerable object.
*
* Set[1, 3, 5] - Set[1, 5] #=> #<Set: {3}>
* Set['a', 'b', 'z'] - ['a', 'c'] #=> #<Set: {"b", "z"}>
*/
static VALUE
set_i_difference(VALUE set, VALUE other)
{
return set_i_subtract(rb_obj_dup(set), other);
}
static int
set_each_i(st_data_t key, st_data_t dummy)
{
rb_yield(key);
return ST_CONTINUE;
}
/*
* call-seq:
* each { |o| ... } -> self
* each -> enumerator
*
* Calls the given block once for each element in the set, passing
* the element as parameter. Returns an enumerator if no block is
* given.
*/
static VALUE
set_i_each(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
set_iter(set, set_each_i, 0);
return set;
}
static int
set_collect_i(st_data_t key, st_data_t data)
{
set_insert_wb((VALUE)data, rb_yield((VALUE)key), NULL);
return ST_CONTINUE;
}
/*
* call-seq:
* collect! { |o| ... } -> self
* collect! -> enumerator
*
* Replaces the elements with ones returned by +collect+.
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_collect(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
VALUE new_set = set_s_alloc(rb_obj_class(set));
set_iter(set, set_collect_i, (st_data_t)new_set);
set_i_initialize_copy(set, new_set);
return set;
}
static int
set_keep_if_i(st_data_t key, st_data_t into)
{
if (!RTEST(rb_yield((VALUE)key))) {
set_table_delete((set_table *)into, &key);
}
return ST_CONTINUE;
}
/*
* call-seq:
* keep_if { |o| ... } -> self
* keep_if -> enumerator
*
* Deletes every element of the set for which block evaluates to false, and
* returns self. Returns an enumerator if no block is given.
*/
static VALUE
set_i_keep_if(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
set_iter(set, set_keep_if_i, (st_data_t)RSET_TABLE(set));
return set;
}
/*
* call-seq:
* select! { |o| ... } -> self
* select! -> enumerator
*
* Equivalent to Set#keep_if, but returns nil if no changes were made.
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_select(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
set_table *table = RSET_TABLE(set);
size_t n = set_table_size(table);
set_iter(set, set_keep_if_i, (st_data_t)table);
return (n == set_table_size(table)) ? Qnil : set;
}
/*
* call-seq:
* replace(enum) -> self
*
* Replaces the contents of the set with the contents of the given
* enumerable object and returns self.
*
* set = Set[1, 'c', :s] #=> #<Set: {1, "c", :s}>
* set.replace([1, 2]) #=> #<Set: {1, 2}>
* set #=> #<Set: {1, 2}>
*/
static VALUE
set_i_replace(VALUE set, VALUE other)
{
rb_check_frozen(set);
if (rb_obj_is_kind_of(other, rb_cSet)) {
set_i_initialize_copy(set, other);
}
else {
if (set_iterating_p(set)) {
rb_raise(rb_eRuntimeError, "cannot replace set during iteration");
}
// make sure enum is enumerable before calling clear
enum_method_id(other);
set_table_clear(RSET_TABLE(set));
set_merge_enum_into(set, other);
}
return set;
}
/*
* call-seq:
* reset -> self
*
* Resets the internal state after modification to existing elements
* and returns self. Elements will be reindexed and deduplicated.
*/
static VALUE
set_i_reset(VALUE set)
{
if (set_iterating_p(set)) {
rb_raise(rb_eRuntimeError, "reset during iteration");
}
return set_reset_table_with_type(set, RSET_TABLE(set)->type);
}
static void set_flatten_merge(VALUE set, VALUE from, VALUE seen);
static int
set_flatten_merge_i(st_data_t item, st_data_t arg)
{
VALUE *args = (VALUE *)arg;
VALUE set = args[0];
if (rb_obj_is_kind_of(item, rb_cSet)) {
VALUE e_id = rb_obj_id(item);
VALUE hash = args[2];
switch(rb_hash_aref(hash, e_id)) {
case Qfalse:
return ST_CONTINUE;
case Qtrue:
rb_raise(rb_eArgError, "tried to flatten recursive Set");
default:
break;
}
rb_hash_aset(hash, e_id, Qtrue);
set_flatten_merge(set, item, hash);
rb_hash_aset(hash, e_id, Qfalse);
}
else {
set_i_add(set, item);
}
return ST_CONTINUE;
}
static void
set_flatten_merge(VALUE set, VALUE from, VALUE hash)
{
VALUE args[3] = {set, from, hash};
set_iter(from, set_flatten_merge_i, (st_data_t)args);
}
/*
* call-seq:
* flatten -> set
*
* Returns a new set that is a copy of the set, flattening each
* containing set recursively.
*/
static VALUE
set_i_flatten(VALUE set)
{
VALUE new_set = set_s_alloc(rb_obj_class(set));
set_flatten_merge(new_set, set, rb_hash_new());
return new_set;
}
static int
set_contains_set_i(st_data_t item, st_data_t arg)
{
if (rb_obj_is_kind_of(item, rb_cSet)) {
*(bool *)arg = true;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* flatten! -> self
*
* Equivalent to Set#flatten, but replaces the receiver with the
* result in place. Returns nil if no modifications were made.
*/
static VALUE
set_i_flatten_bang(VALUE set)
{
bool contains_set = false;
set_iter(set, set_contains_set_i, (st_data_t)&contains_set);
if (!contains_set) return Qnil;
rb_check_frozen(set);
return set_i_replace(set, set_i_flatten(set));
}
struct set_subset_data {
set_table *table;
VALUE result;
};
static int
set_le_i(st_data_t key, st_data_t arg)
{
struct set_subset_data *data = (struct set_subset_data *)arg;
if (set_table_lookup(data->table, key)) return ST_CONTINUE;
data->result = Qfalse;
return ST_STOP;
}
static VALUE
set_le(VALUE set, VALUE other)
{
struct set_subset_data data = {
.table = RSET_TABLE(other),
.result = Qtrue
};
set_iter(set, set_le_i, (st_data_t)&data);
return data.result;
}
/*
* call-seq:
* proper_subset?(set) -> true or false
*
* Returns true if the set is a proper subset of the given set.
*/
static VALUE
set_i_proper_subset(VALUE set, VALUE other)
{
check_set(other);
if (RSET_SIZE(set) >= RSET_SIZE(other)) return Qfalse;
return set_le(set, other);
}
/*
* call-seq:
* subset?(set) -> true or false
*
* Returns true if the set is a subset of the given set.
*/
static VALUE
set_i_subset(VALUE set, VALUE other)
{
check_set(other);
if (RSET_SIZE(set) > RSET_SIZE(other)) return Qfalse;
return set_le(set, other);
}
/*
* call-seq:
* proper_superset?(set) -> true or false
*
* Returns true if the set is a proper superset of the given set.
*/
static VALUE
set_i_proper_superset(VALUE set, VALUE other)
{
check_set(other);
if (RSET_SIZE(set) <= RSET_SIZE(other)) return Qfalse;
return set_le(other, set);
}
/*
* call-seq:
* superset?(set) -> true or false
*
* Returns true if the set is a superset of the given set.
*/
static VALUE
set_i_superset(VALUE set, VALUE other)
{
check_set(other);
if (RSET_SIZE(set) < RSET_SIZE(other)) return Qfalse;
return set_le(other, set);
}
static int
set_intersect_i(st_data_t key, st_data_t arg)
{
VALUE *args = (VALUE *)arg;
if (set_table_lookup((set_table *)args[0], key)) {
args[1] = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* intersect?(set) -> true or false
*
* Returns true if the set and the given enumerable have at least one
* element in common.
*
* Set[1, 2, 3].intersect? Set[4, 5] #=> false
* Set[1, 2, 3].intersect? Set[3, 4] #=> true
* Set[1, 2, 3].intersect? 4..5 #=> false
* Set[1, 2, 3].intersect? [3, 4] #=> true
*/
static VALUE
set_i_intersect(VALUE set, VALUE other)
{
if (rb_obj_is_kind_of(other, rb_cSet)) {
size_t set_size = RSET_SIZE(set);
size_t other_size = RSET_SIZE(other);
VALUE args[2];
args[1] = Qfalse;
VALUE iter_arg;
if (set_size < other_size) {
iter_arg = set;
args[0] = (VALUE)RSET_TABLE(other);
}
else {
iter_arg = other;
args[0] = (VALUE)RSET_TABLE(set);
}
set_iter(iter_arg, set_intersect_i, (st_data_t)args);
return args[1];
}
else if (rb_obj_is_kind_of(other, rb_mEnumerable)) {
return rb_funcall(other, id_any_p, 1, set);
}
else {
rb_raise(rb_eArgError, "value must be enumerable");
}
}
/*
* call-seq:
* disjoint?(set) -> true or false
*
* Returns true if the set and the given enumerable have no
* element in common. This method is the opposite of +intersect?+.
*
* Set[1, 2, 3].disjoint? Set[3, 4] #=> false
* Set[1, 2, 3].disjoint? Set[4, 5] #=> true
* Set[1, 2, 3].disjoint? [3, 4] #=> false
* Set[1, 2, 3].disjoint? 4..5 #=> true
*/
static VALUE
set_i_disjoint(VALUE set, VALUE other)
{
return RBOOL(!RTEST(set_i_intersect(set, other)));
}
/*
* call-seq:
* set <=> other -> -1, 0, 1, or nil
*
* Returns 0 if the set are equal, -1 / 1 if the set is a
* proper subset / superset of the given set, or or nil if
* they both have unique elements.
*/
static VALUE
set_i_compare(VALUE set, VALUE other)
{
if (rb_obj_is_kind_of(other, rb_cSet)) {
size_t set_size = RSET_SIZE(set);
size_t other_size = RSET_SIZE(other);
if (set_size < other_size) {
if (set_le(set, other) == Qtrue) {
return INT2NUM(-1);
}
}
else if (set_size > other_size) {
if (set_le(other, set) == Qtrue) {
return INT2NUM(1);
}
}
else if (set_le(set, other) == Qtrue) {
return INT2NUM(0);
}
}
return Qnil;
}
struct set_equal_data {
VALUE result;
VALUE set;
};
static int
set_eql_i(st_data_t item, st_data_t arg)
{
struct set_equal_data *data = (struct set_equal_data *)arg;
if (!set_table_lookup(RSET_TABLE(data->set), item)) {
data->result = Qfalse;
return ST_STOP;
}
return ST_CONTINUE;
}
static VALUE
set_recursive_eql(VALUE set, VALUE dt, int recur)
{
if (recur) return Qtrue;
struct set_equal_data *data = (struct set_equal_data*)dt;
data->result = Qtrue;
set_iter(set, set_eql_i, dt);
return data->result;
}
/*
* call-seq:
* set == other -> true or false
*
* Returns true if two sets are equal.
*/
static VALUE
set_i_eq(VALUE set, VALUE other)
{
if (!rb_obj_is_kind_of(other, rb_cSet)) return Qfalse;
if (set == other) return Qtrue;
set_table *stable = RSET_TABLE(set);
set_table *otable = RSET_TABLE(other);
size_t ssize = set_table_size(stable);
size_t osize = set_table_size(otable);
if (ssize != osize) return Qfalse;
if (ssize == 0 && osize == 0) return Qtrue;
if (stable->type != otable->type) return Qfalse;
struct set_equal_data data;
data.set = other;
return rb_exec_recursive_paired(set_recursive_eql, set, other, (VALUE)&data);
}
static int
set_hash_i(st_data_t item, st_data_t(arg))
{
st_index_t *hval = (st_index_t *)arg;
st_index_t ival = rb_hash(item);
*hval ^= rb_st_hash(&ival, sizeof(st_index_t), 0);
return ST_CONTINUE;
}
/*
* call-seq:
* hash -> integer
*
* Returns hash code for set.
*/
static VALUE
set_i_hash(VALUE set)
{
st_index_t size = RSET_SIZE(set);
st_index_t hval = rb_st_hash_start(size);
hval = rb_hash_uint(hval, (st_index_t)set_i_hash);
if (size) {
set_iter(set, set_hash_i, (VALUE)&hval);
}
hval = rb_st_hash_end(hval);
return ST2FIX(hval);
}
/* :nodoc: */
static int
set_to_hash_i(st_data_t key, st_data_t arg)
{
rb_hash_aset((VALUE)arg, (VALUE)key, Qtrue);
return ST_CONTINUE;
}
static VALUE
set_i_to_h(VALUE set)
{
st_index_t size = RSET_SIZE(set);
VALUE hash;
if (RSET_COMPARE_BY_IDENTITY(set)) {
hash = rb_ident_hash_new_with_size(size);
}
else {
hash = rb_hash_new_with_size(size);
}
rb_hash_set_default(hash, Qfalse);
if (size == 0) return hash;
set_iter(set, set_to_hash_i, (st_data_t)hash);
return hash;
}
static VALUE
compat_dumper(VALUE set)
{
VALUE dumper = rb_class_new_instance(0, 0, rb_cObject);
rb_ivar_set(dumper, id_i_hash, set_i_to_h(set));
return dumper;
}
static int
set_i_from_hash_i(st_data_t key, st_data_t val, st_data_t set)
{
if ((VALUE)val != Qtrue) {
rb_raise(rb_eRuntimeError, "expect true as Set value: %"PRIsVALUE, rb_obj_class((VALUE)val));
}
set_i_add((VALUE)set, (VALUE)key);
return ST_CONTINUE;
}
static VALUE
set_i_from_hash(VALUE set, VALUE hash)
{
Check_Type(hash, T_HASH);
if (rb_hash_compare_by_id_p(hash)) set_i_compare_by_identity(set);
rb_hash_stlike_foreach(hash, set_i_from_hash_i, (st_data_t)set);
return set;
}
static VALUE
compat_loader(VALUE self, VALUE a)
{
return set_i_from_hash(self, rb_ivar_get(a, id_i_hash));
}
/* C-API functions */
void
rb_set_foreach(VALUE set, int (*func)(VALUE element, VALUE arg), VALUE arg)
{
set_iter(set, func, arg);
}
VALUE
rb_set_new(void)
{
return set_alloc_with_size(rb_cSet, 0);
}
VALUE
rb_set_new_capa(size_t capa)
{
return set_alloc_with_size(rb_cSet, (st_index_t)capa);
}
bool
rb_set_lookup(VALUE set, VALUE element)
{
return RSET_IS_MEMBER(set, element);
}
bool
rb_set_add(VALUE set, VALUE element)
{
return set_i_add_p(set, element) != Qnil;
}
VALUE
rb_set_clear(VALUE set)
{
return set_i_clear(set);
}
bool
rb_set_delete(VALUE set, VALUE element)
{
return set_i_delete_p(set, element) != Qnil;
}
size_t
rb_set_size(VALUE set)
{
return RSET_SIZE(set);
}
/*
* Document-class: Set
*
* Copyright (c) 2002-2024 Akinori MUSHA <knu@iDaemons.org>
*
* Documentation by Akinori MUSHA and Gavin Sinclair.
*
* All rights reserved. You can redistribute and/or modify it under the same
* terms as Ruby.
*
* The Set class implements a collection of unordered values with no
* duplicates. It is a hybrid of Array's intuitive inter-operation
* facilities and Hash's fast lookup.
*
* Set is easy to use with Enumerable objects (implementing `each`).
* Most of the initializer methods and binary operators accept generic
* Enumerable objects besides sets and arrays. An Enumerable object
* can be converted to Set using the `to_set` method.
*
* Set uses a data structure similar to Hash for storage, except that
* it only has keys and no values.
*
* * Equality of elements is determined according to Object#eql? and
* Object#hash. Use Set#compare_by_identity to make a set compare
* its elements by their identity.
* * Set assumes that the identity of each element does not change
* while it is stored. Modifying an element of a set will render the
* set to an unreliable state.
* * When a string is to be stored, a frozen copy of the string is
* stored instead unless the original string is already frozen.
*
* == Comparison
*
* The comparison operators <tt><</tt>, <tt>></tt>, <tt><=</tt>, and
* <tt>>=</tt> are implemented as shorthand for the
* {proper_,}{subset?,superset?} methods. The <tt><=></tt>
* operator reflects this order, or returns +nil+ for sets that both
* have distinct elements (<tt>{x, y}</tt> vs. <tt>{x, z}</tt> for example).
*
* == Example
*
* s1 = Set[1, 2] #=> #<Set: {1, 2}>
* s2 = [1, 2].to_set #=> #<Set: {1, 2}>
* s1 == s2 #=> true
* s1.add("foo") #=> #<Set: {1, 2, "foo"}>
* s1.merge([2, 6]) #=> #<Set: {1, 2, "foo", 6}>
* s1.subset?(s2) #=> false
* s2.subset?(s1) #=> true
*
* == Contact
*
* - Akinori MUSHA <knu@iDaemons.org> (current maintainer)
*
* == What's Here
*
* First, what's elsewhere. \Class \Set:
*
* - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
* - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here],
* which provides dozens of additional methods.
*
* In particular, class \Set does not have many methods of its own
* for fetching or for iterating.
* Instead, it relies on those in \Enumerable.
*
* Here, class \Set provides methods that are useful for:
*
* - {Creating an Array}[rdoc-ref:Array@Methods+for+Creating+an+Array]
* - {Creating a Set}[rdoc-ref:Set@Methods+for+Creating+a+Set]
* - {Set Operations}[rdoc-ref:Set@Methods+for+Set+Operations]
* - {Comparing}[rdoc-ref:Array@Methods+for+Comparing]
* - {Querying}[rdoc-ref:Array@Methods+for+Querying]
* - {Assigning}[rdoc-ref:Array@Methods+for+Assigning]
* - {Deleting}[rdoc-ref:Array@Methods+for+Deleting]
* - {Converting}[rdoc-ref:Array@Methods+for+Converting]
* - {Iterating}[rdoc-ref:Array@Methods+for+Iterating]
* - {And more....}[rdoc-ref:Array@Other+Methods]
*
* === Methods for Creating a \Set
*
* - ::[]:
* Returns a new set containing the given objects.
* - ::new:
* Returns a new set containing either the given objects
* (if no block given) or the return values from the called block
* (if a block given).
*
* === Methods for \Set Operations
*
* - #| (aliased as #union and #+):
* Returns a new set containing all elements from +self+
* and all elements from a given enumerable (no duplicates).
* - #& (aliased as #intersection):
* Returns a new set containing all elements common to +self+
* and a given enumerable.
* - #- (aliased as #difference):
* Returns a copy of +self+ with all elements
* in a given enumerable removed.
* - #^: Returns a new set containing all elements from +self+
* and a given enumerable except those common to both.
*
* === Methods for Comparing
*
* - #<=>: Returns -1, 0, or 1 as +self+ is less than, equal to,
* or greater than a given object.
* - #==: Returns whether +self+ and a given enumerable are equal,
* as determined by Object#eql?.
* - #compare_by_identity?:
* Returns whether the set considers only identity
* when comparing elements.
*
* === Methods for Querying
*
* - #length (aliased as #size):
* Returns the count of elements.
* - #empty?:
* Returns whether the set has no elements.
* - #include? (aliased as #member? and #===):
* Returns whether a given object is an element in the set.
* - #subset? (aliased as #<=):
* Returns whether a given object is a subset of the set.
* - #proper_subset? (aliased as #<):
* Returns whether a given enumerable is a proper subset of the set.
* - #superset? (aliased as #>=):
* Returns whether a given enumerable is a superset of the set.
* - #proper_superset? (aliased as #>):
* Returns whether a given enumerable is a proper superset of the set.
* - #disjoint?:
* Returns +true+ if the set and a given enumerable
* have no common elements, +false+ otherwise.
* - #intersect?:
* Returns +true+ if the set and a given enumerable:
* have any common elements, +false+ otherwise.
* - #compare_by_identity?:
* Returns whether the set considers only identity
* when comparing elements.
*
* === Methods for Assigning
*
* - #add (aliased as #<<):
* Adds a given object to the set; returns +self+.
* - #add?:
* If the given object is not an element in the set,
* adds it and returns +self+; otherwise, returns +nil+.
* - #merge:
* Merges the elements of each given enumerable object to the set; returns +self+.
* - #replace:
* Replaces the contents of the set with the contents
* of a given enumerable.
*
* === Methods for Deleting
*
* - #clear:
* Removes all elements in the set; returns +self+.
* - #delete:
* Removes a given object from the set; returns +self+.
* - #delete?:
* If the given object is an element in the set,
* removes it and returns +self+; otherwise, returns +nil+.
* - #subtract:
* Removes each given object from the set; returns +self+.
* - #delete_if - Removes elements specified by a given block.
* - #select! (aliased as #filter!):
* Removes elements not specified by a given block.
* - #keep_if:
* Removes elements not specified by a given block.
* - #reject!
* Removes elements specified by a given block.
*
* === Methods for Converting
*
* - #classify:
* Returns a hash that classifies the elements,
* as determined by the given block.
* - #collect! (aliased as #map!):
* Replaces each element with a block return-value.
* - #divide:
* Returns a hash that classifies the elements,
* as determined by the given block;
* differs from #classify in that the block may accept
* either one or two arguments.
* - #flatten:
* Returns a new set that is a recursive flattening of +self+.
* - #flatten!:
* Replaces each nested set in +self+ with the elements from that set.
* - #inspect (aliased as #to_s):
* Returns a string displaying the elements.
* - #join:
* Returns a string containing all elements, converted to strings
* as needed, and joined by the given record separator.
* - #to_a:
* Returns an array containing all set elements.
* - #to_set:
* Returns +self+ if given no arguments and no block;
* with a block given, returns a new set consisting of block
* return values.
*
* === Methods for Iterating
*
* - #each:
* Calls the block with each successive element; returns +self+.
*
* === Other Methods
*
* - #reset:
* Resets the internal state; useful if an object
* has been modified while an element in the set.
*
*/
void
Init_Set(void)
{
rb_cSet = rb_define_class("Set", rb_cObject);
rb_include_module(rb_cSet, rb_mEnumerable);
id_each_entry = rb_intern_const("each_entry");
id_any_p = rb_intern_const("any?");
id_new = rb_intern_const("new");
id_i_hash = rb_intern_const("@hash");
id_subclass_compatible = rb_intern_const("SubclassCompatible");
id_class_methods = rb_intern_const("ClassMethods");
id_set_iter_lev = rb_make_internal_id();
rb_define_alloc_func(rb_cSet, set_s_alloc);
rb_define_singleton_method(rb_cSet, "[]", set_s_create, -1);
rb_define_method(rb_cSet, "initialize", set_i_initialize, -1);
rb_define_method(rb_cSet, "initialize_copy", set_i_initialize_copy, 1);
rb_define_method(rb_cSet, "&", set_i_intersection, 1);
rb_define_alias(rb_cSet, "intersection", "&");
rb_define_method(rb_cSet, "-", set_i_difference, 1);
rb_define_alias(rb_cSet, "difference", "-");
rb_define_method(rb_cSet, "^", set_i_xor, 1);
rb_define_method(rb_cSet, "|", set_i_union, 1);
rb_define_alias(rb_cSet, "+", "|");
rb_define_alias(rb_cSet, "union", "|");
rb_define_method(rb_cSet, "<=>", set_i_compare, 1);
rb_define_method(rb_cSet, "==", set_i_eq, 1);
rb_define_alias(rb_cSet, "eql?", "==");
rb_define_method(rb_cSet, "add", set_i_add, 1);
rb_define_alias(rb_cSet, "<<", "add");
rb_define_method(rb_cSet, "add?", set_i_add_p, 1);
rb_define_method(rb_cSet, "classify", set_i_classify, 0);
rb_define_method(rb_cSet, "clear", set_i_clear, 0);
rb_define_method(rb_cSet, "collect!", set_i_collect, 0);
rb_define_alias(rb_cSet, "map!", "collect!");
rb_define_method(rb_cSet, "compare_by_identity", set_i_compare_by_identity, 0);
rb_define_method(rb_cSet, "compare_by_identity?", set_i_compare_by_identity_p, 0);
rb_define_method(rb_cSet, "delete", set_i_delete, 1);
rb_define_method(rb_cSet, "delete?", set_i_delete_p, 1);
rb_define_method(rb_cSet, "delete_if", set_i_delete_if, 0);
rb_define_method(rb_cSet, "disjoint?", set_i_disjoint, 1);
rb_define_method(rb_cSet, "divide", set_i_divide, 0);
rb_define_method(rb_cSet, "each", set_i_each, 0);
rb_define_method(rb_cSet, "empty?", set_i_empty, 0);
rb_define_method(rb_cSet, "flatten", set_i_flatten, 0);
rb_define_method(rb_cSet, "flatten!", set_i_flatten_bang, 0);
rb_define_method(rb_cSet, "hash", set_i_hash, 0);
rb_define_method(rb_cSet, "include?", set_i_include, 1);
rb_define_alias(rb_cSet, "member?", "include?");
rb_define_alias(rb_cSet, "===", "include?");
rb_define_method(rb_cSet, "inspect", set_i_inspect, 0);
rb_define_alias(rb_cSet, "to_s", "inspect");
rb_define_method(rb_cSet, "intersect?", set_i_intersect, 1);
rb_define_method(rb_cSet, "join", set_i_join, -1);
rb_define_method(rb_cSet, "keep_if", set_i_keep_if, 0);
rb_define_method(rb_cSet, "merge", set_i_merge, -1);
rb_define_method(rb_cSet, "proper_subset?", set_i_proper_subset, 1);
rb_define_alias(rb_cSet, "<", "proper_subset?");
rb_define_method(rb_cSet, "proper_superset?", set_i_proper_superset, 1);
rb_define_alias(rb_cSet, ">", "proper_superset?");
rb_define_method(rb_cSet, "reject!", set_i_reject, 0);
rb_define_method(rb_cSet, "replace", set_i_replace, 1);
rb_define_method(rb_cSet, "reset", set_i_reset, 0);
rb_define_method(rb_cSet, "size", set_i_size, 0);
rb_define_alias(rb_cSet, "length", "size");
rb_define_method(rb_cSet, "select!", set_i_select, 0);
rb_define_alias(rb_cSet, "filter!", "select!");
rb_define_method(rb_cSet, "subset?", set_i_subset, 1);
rb_define_alias(rb_cSet, "<=", "subset?");
rb_define_method(rb_cSet, "subtract", set_i_subtract, 1);
rb_define_method(rb_cSet, "superset?", set_i_superset, 1);
rb_define_alias(rb_cSet, ">=", "superset?");
rb_define_method(rb_cSet, "to_a", set_i_to_a, 0);
rb_define_method(rb_cSet, "to_set", set_i_to_set, -1);
/* :nodoc: */
VALUE compat = rb_define_class_under(rb_cSet, "compatible", rb_cObject);
rb_marshal_define_compat(rb_cSet, compat, compat_dumper, compat_loader);
// Create Set::CoreSet before defining inherited, so it does not include
// the backwards compatibility layer.
rb_define_class_under(rb_cSet, "CoreSet", rb_cSet);
rb_define_private_method(rb_singleton_class(rb_cSet), "inherited", set_s_inherited, 1);
rb_provide("set.rb");
}