| Age | Commit message (Collapse) | Author |
|
Move KHO to kernel/liveupdate/ in preparation of placing all Live Update
core kernel related files to the same place.
[pasha.tatashin@soleen.com: disable the menu when DEFERRED_STRUCT_PAGE_INIT]
Link: https://lkml.kernel.org/r/CA+CK2bAvh9Oa2SLfsbJ8zztpEjrgr_hr-uGgF1coy8yoibT39A@mail.gmail.com
Link: https://lkml.kernel.org/r/20251101142325.1326536-8-pasha.tatashin@soleen.com
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Alexander Graf <graf@amazon.com>
Cc: Changyuan Lyu <changyuanl@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Pratyush Yadav <pratyush@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Simon Horman <horms@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zhu Yanjun <yanjun.zhu@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "liveupdate: Rework KHO for in-kernel users", v9.
This series refactors the KHO framework to better support in-kernel users
like the upcoming LUO. The current design, which relies on a notifier
chain and debugfs for control, is too restrictive for direct programmatic
use.
The core of this rework is the removal of the notifier chain in favor of a
direct registration API. This decouples clients from the shutdown-time
finalization sequence, allowing them to manage their preserved state more
flexibly and at any time.
In support of this new model, this series also:
- Makes the debugfs interface optional.
- Introduces APIs to unpreserve memory and fixes a bug in the abort
path where client state was being incorrectly discarded. Note that
this is an interim step, as a more comprehensive fix is planned as
part of the stateless KHO work [1].
- Moves all KHO code into a new kernel/liveupdate/ directory to
consolidate live update components.
This patch (of 9):
Currently, KHO is controlled via debugfs interface, but once LUO is
introduced, it can control KHO, and the debug interface becomes optional.
Add a separate config CONFIG_KEXEC_HANDOVER_DEBUGFS that enables the
debugfs interface, and allows to inspect the tree.
Move all debugfs related code to a new file to keep the .c files clear of
ifdefs.
Link: https://lkml.kernel.org/r/20251101142325.1326536-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20251101142325.1326536-2-pasha.tatashin@soleen.com
Link: https://lore.kernel.org/all/20251020100306.2709352-1-jasonmiu@google.com [1]
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Pratyush Yadav <pratyush@kernel.org>
Cc: Alexander Graf <graf@amazon.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Changyuan Lyu <changyuanl@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Simon Horman <horms@kernel.org>
Cc: Zhu Yanjun <yanjun.zhu@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "KHO: kfence + KHO memory corruption fix", v3.
This series fixes a memory corruption bug in KHO that occurs when KFENCE
is enabled.
The root cause is that KHO metadata, allocated via kzalloc(), can be
randomly serviced by kfence_alloc(). When a kernel boots via KHO, the
early memblock allocator is restricted to a "scratch area". This forces
the KFENCE pool to be allocated within this scratch area, creating a
conflict. If KHO metadata is subsequently placed in this pool, it gets
corrupted during the next kexec operation.
Google is using KHO and have had obscure crashes due to this memory
corruption, with stacks all over the place. I would prefer this fix to be
properly backported to stable so we can also automatically consume it once
we switch to the upstream KHO.
Patch 1/3 introduces a debug-only feature (CONFIG_KEXEC_HANDOVER_DEBUG)
that adds checks to detect and fail any operation that attempts to place
KHO metadata or preserved memory within the scratch area. This serves as
a validation and diagnostic tool to confirm the problem without affecting
production builds.
Patch 2/3 Increases bitmap to PAGE_SIZE, so buddy allocator can be used.
Patch 3/3 Provides the fix by modifying KHO to allocate its metadata
directly from the buddy allocator instead of slab. This bypasses the
KFENCE interception entirely.
This patch (of 3):
It is invalid for KHO metadata or preserved memory regions to be located
within the KHO scratch area, as this area is overwritten when the next
kernel is loaded, and used early in boot by the next kernel. This can
lead to memory corruption.
Add checks to kho_preserve_* and KHO's internal metadata allocators
(xa_load_or_alloc, new_chunk) to verify that the physical address of the
memory does not overlap with any defined scratch region. If an overlap is
detected, the operation will fail and a WARN_ON is triggered. To avoid
performance overhead in production kernels, these checks are enabled only
when CONFIG_KEXEC_HANDOVER_DEBUG is selected.
[rppt@kernel.org: fix KEXEC_HANDOVER_DEBUG Kconfig dependency]
Link: https://lkml.kernel.org/r/aQHUyyFtiNZhx8jo@kernel.org
[pasha.tatashin@soleen.com: build fix]
Link: https://lkml.kernel.org/r/CA+CK2bBnorfsTymKtv4rKvqGBHs=y=MjEMMRg_tE-RME6n-zUw@mail.gmail.com
Link: https://lkml.kernel.org/r/20251021000852.2924827-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20251021000852.2924827-2-pasha.tatashin@soleen.com
Fixes: fc33e4b44b27 ("kexec: enable KHO support for memory preservation")
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Mike Rapoport <rppt@kernel.org>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Pratyush Yadav <pratyush@kernel.org>
Cc: Alexander Graf <graf@amazon.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Matlack <dmatlack@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Samiullah Khawaja <skhawaja@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- "ida: Remove the ida_simple_xxx() API" from Christophe Jaillet
completes the removal of this legacy IDR API
- "panic: introduce panic status function family" from Jinchao Wang
provides a number of cleanups to the panic code and its various
helpers, which were rather ad-hoc and scattered all over the place
- "tools/delaytop: implement real-time keyboard interaction support"
from Fan Yu adds a few nice user-facing usability changes to the
delaytop monitoring tool
- "efi: Fix EFI boot with kexec handover (KHO)" from Evangelos
Petrongonas fixes a panic which was happening with the combination of
EFI and KHO
- "Squashfs: performance improvement and a sanity check" from Phillip
Lougher teaches squashfs's lseek() about SEEK_DATA/SEEK_HOLE. A mere
150x speedup was measured for a well-chosen microbenchmark
- plus another 50-odd singleton patches all over the place
* tag 'mm-nonmm-stable-2025-10-02-15-29' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (75 commits)
Squashfs: reject negative file sizes in squashfs_read_inode()
kallsyms: use kmalloc_array() instead of kmalloc()
MAINTAINERS: update Sibi Sankar's email address
Squashfs: add SEEK_DATA/SEEK_HOLE support
Squashfs: add additional inode sanity checking
lib/genalloc: fix device leak in of_gen_pool_get()
panic: remove CONFIG_PANIC_ON_OOPS_VALUE
ocfs2: fix double free in user_cluster_connect()
checkpatch: suppress strscpy warnings for userspace tools
cramfs: fix incorrect physical page address calculation
kernel: prevent prctl(PR_SET_PDEATHSIG) from racing with parent process exit
Squashfs: fix uninit-value in squashfs_get_parent
kho: only fill kimage if KHO is finalized
ocfs2: avoid extra calls to strlen() after ocfs2_sprintf_system_inode_name()
kernel/sys.c: fix the racy usage of task_lock(tsk->group_leader) in sys_prlimit64() paths
sched/task.h: fix the wrong comment on task_lock() nesting with tasklist_lock
coccinelle: platform_no_drv_owner: handle also built-in drivers
coccinelle: of_table: handle SPI device ID tables
lib/decompress: use designated initializers for struct compress_format
efi: support booting with kexec handover (KHO)
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"One notable addition is the creation of the 'transitional' keyword for
kconfig so CONFIG renaming can go more smoothly.
This has been a long-standing deficiency, and with the renaming of
CONFIG_CFI_CLANG to CONFIG_CFI (since GCC will soon have KCFI
support), this came up again.
The breadth of the diffstat is mainly this renaming.
- Clean up usage of TRAILING_OVERLAP() (Gustavo A. R. Silva)
- lkdtm: fortify: Fix potential NULL dereference on kmalloc failure
(Junjie Cao)
- Add str_assert_deassert() helper (Lad Prabhakar)
- gcc-plugins: Remove TODO_verify_il for GCC >= 16
- kconfig: Fix BrokenPipeError warnings in selftests
- kconfig: Add transitional symbol attribute for migration support
- kcfi: Rename CONFIG_CFI_CLANG to CONFIG_CFI"
* tag 'hardening-v6.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
lib/string_choices: Add str_assert_deassert() helper
kcfi: Rename CONFIG_CFI_CLANG to CONFIG_CFI
kconfig: Add transitional symbol attribute for migration support
kconfig: Fix BrokenPipeError warnings in selftests
gcc-plugins: Remove TODO_verify_il for GCC >= 16
stddef: Introduce __TRAILING_OVERLAP()
stddef: Remove token-pasting in TRAILING_OVERLAP()
lkdtm: fortify: Fix potential NULL dereference on kmalloc failure
|
|
The kernel's CFI implementation uses the KCFI ABI specifically, and is
not strictly tied to a particular compiler. In preparation for GCC
supporting KCFI, rename CONFIG_CFI_CLANG to CONFIG_CFI (along with
associated options).
Use new "transitional" Kconfig option for old CONFIG_CFI_CLANG that will
enable CONFIG_CFI during olddefconfig.
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20250923213422.1105654-3-kees@kernel.org
Signed-off-by: Kees Cook <kees@kernel.org>
|
|
It's really awkward spilling the ns common infrastructure into multiple
headers. Move it to a separate file.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Move the namespace iteration infrastructure originally introduced for
mount namespaces into a generic library usable by all namespace types.
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
crash_exclude_mem_range seems to be a simple function but there have been
multiple attempts to fix it,
- commit a2e9a95d2190 ("kexec: Improve & fix crash_exclude_mem_range()
to handle overlapping ranges")
- commit 6dff31597264 ("crash_core: fix and simplify the logic of
crash_exclude_mem_range()")
So add a set of unit tests to verify the correctness of current
implementation. Shall we change the function in the future, the unit
tests can also help prevent any regression. For example, we may make the
function smarter by allocating extra crash_mem range on demand thus there
is no need for the caller to foresee any memory range split or address
-ENOMEM failure.
The testing strategy is to verify the correctness of base case. The
base case is there is one to-be-excluded range A and one existing range
B. Then we can exhaust all possibilities of the position of A regarding
B. For example, here are two combinations,
Case: A is completely inside B (causes split)
Original: [----B----]
Exclude: {--A--}
Result: [B1] .. [B2]
Case: A overlaps B's left part
Original: [----B----]
Exclude: {---A---}
Result: [..B..]
In theory we can prove the correctness by induction,
- Base case: crash_exclude_mem_range is correct in the case where n=1
(n is the number of existing ranges).
- Inductive step: If crash_exclude_mem_range is correct for n=k
existing ranges, then the it's also correct for n=k+1 ranges.
But for the sake of simplicity, simply use unit tests to cover the base
case together with two regression tests.
Note most of the exclude_single_range_test() code is generated by Google
Gemini with some small tweaks. The function specification, function body
and the exhausting test strategy are presented as prompts.
[akpm@linux-foundation.org: export crash_exclude_mem_range() to modules, for kernel/crash_core_test.c]
Link: https://lkml.kernel.org/r/20250904093855.1180154-2-coxu@redhat.com
Signed-off-by: Coiby Xu <coxu@redhat.com>
Assisted-by: Google Gemini
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Young <dyoung@redhat.com>
Cc: fuqiang wang <fuqiang.wang@easystack.cn>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
"This is the last pull request from me.
I'm grateful to have been able to continue as a maintainer for eight
years. From the next cycle, Nathan and Nicolas will maintain Kbuild.
- Fix a shortcut key issue in menuconfig
- Fix missing rebuild of kheaders
- Sort the symbol dump generated by gendwarfsyms
- Support zboot extraction in scripts/extract-vmlinux
- Migrate gconfig to GTK 3
- Add TAR variable to allow overriding the default tar command
- Hand over Kbuild maintainership"
* tag 'kbuild-v6.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (92 commits)
MAINTAINERS: hand over Kbuild maintenance
kheaders: make it possible to override TAR
kbuild: userprogs: use correct linker when mixing clang and GNU ld
kconfig: lxdialog: replace strcpy() with strncpy() in inputbox.c
kconfig: lxdialog: replace strcpy with snprintf in print_autowrap
kconfig: gconf: refactor text_insert_help()
kconfig: gconf: remove unneeded variable in text_insert_msg
kconfig: gconf: use hyphens in signals
kconfig: gconf: replace GtkImageMenuItem with GtkMenuItem
kconfig: gconf: Fix Back button behavior
kconfig: gconf: fix single view to display dependent symbols correctly
scripts: add zboot support to extract-vmlinux
gendwarfksyms: order -T symtypes output by name
gendwarfksyms: use preferred form of sizeof for allocation
kconfig: qconf: confine {begin,end}Group to constructor and destructor
kconfig: qconf: fix ConfigList::updateListAllforAll()
kconfig: add a function to dump all menu entries in a tree-like format
kconfig: gconf: show GTK version in About dialog
kconfig: gconf: replace GtkHPaned and GtkVPaned with GtkPaned
kconfig: gconf: replace GdkColor with GdkRGBA
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull initial deferred unwind infrastructure from Steven Rostedt:
"This is the core infrastructure for the deferred unwinder that is
required for sframes[1]. Several other patch series are based on this
work although those patch series are not dependent on each other. In
order to simplify the development, having this core series upstream
will allow the other series to be worked on in parallel. The other
series are:
- The two patches to implement x86 support [2] [3]
- The s390 work [4]
- The perf work [5]
- The ftrace work [6]
- The sframe work [7]
And more is on the way.
The core infrastructure adds the following in kernel APIs:
- int unwind_user_faultable(struct unwind_stacktrace *trace);
Performs a user space stack trace that may fault user pages in.
- int unwind_deferred_init(struct unwind_work *work, unwind_callback_t func);
Allows a tracer to register with the unwind deferred
infrastructure.
- int unwind_deferred_request(struct unwind_work *work, u64 *cookie);
Used when a tracer request a deferred trace. Can be called from
interrupt or NMI context.
- void unwind_deferred_cancel(struct unwind_work *work);
Called by a tracer to unregister from the deferred unwind
infrastructure.
- void unwind_deferred_task_exit(struct task_struct *task);
Called by task exit code to flush any pending unwind requests.
- void unwind_task_init(struct task_struct *task);
Called by do_fork() to initialize the task struct for the
deferred unwinder.
- void unwind_task_free(struct task_struct *task);
Called by do_exit() to free up any resources used by the
deferred unwinder.
None of the above is actually compiled unless an architecture enables it,
which none currently do"
Link: https://sourceware.org/binutils/wiki/sframe [1]
Link: https://lore.kernel.org/linux-trace-kernel/20250717004958.260781923@kernel.org/ [2]
Link: https://lore.kernel.org/linux-trace-kernel/20250717004958.432327787@kernel.org/ [3]
Link: https://lore.kernel.org/linux-trace-kernel/20250710163522.3195293-1-jremus@linux.ibm.com/ [4]
Link: https://lore.kernel.org/linux-trace-kernel/20250718164119.089692174@kernel.org/ [5]
Link: https://lore.kernel.org/linux-trace-kernel/20250424192612.505622711@goodmis.org/ [6]
Link: https://lore.kernel.org/linux-trace-kernel/20250717012848.927473176@kernel.org/ [7]
* tag 'trace-deferred-unwind-v6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
unwind: Finish up unwind when a task exits
unwind deferred: Use SRCU unwind_deferred_task_work()
unwind: Add USED bit to only have one conditional on way back to user space
unwind deferred: Add unwind_completed mask to stop spurious callbacks
unwind deferred: Use bitmask to determine which callbacks to call
unwind_user/deferred: Make unwind deferral requests NMI-safe
unwind_user/deferred: Add deferred unwinding interface
unwind_user/deferred: Add unwind cache
unwind_user/deferred: Add unwind_user_faultable()
unwind_user: Add user space unwinding API with frame pointer support
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf updates from Alexei Starovoitov:
- Remove usermode driver (UMD) framework (Thomas Weißschuh)
- Introduce Strongly Connected Component (SCC) in the verifier to
detect loops and refine register liveness (Eduard Zingerman)
- Allow 'void *' cast using bpf_rdonly_cast() and corresponding
'__arg_untrusted' for global function parameters (Eduard Zingerman)
- Improve precision for BPF_ADD and BPF_SUB operations in the verifier
(Harishankar Vishwanathan)
- Teach the verifier that constant pointer to a map cannot be NULL
(Ihor Solodrai)
- Introduce BPF streams for error reporting of various conditions
detected by BPF runtime (Kumar Kartikeya Dwivedi)
- Teach the verifier to insert runtime speculation barrier (lfence on
x86) to mitigate speculative execution instead of rejecting the
programs (Luis Gerhorst)
- Various improvements for 'veristat' (Mykyta Yatsenko)
- For CONFIG_DEBUG_KERNEL config warn on internal verifier errors to
improve bug detection by syzbot (Paul Chaignon)
- Support BPF private stack on arm64 (Puranjay Mohan)
- Introduce bpf_cgroup_read_xattr() kfunc to read xattr of cgroup's
node (Song Liu)
- Introduce kfuncs for read-only string opreations (Viktor Malik)
- Implement show_fdinfo() for bpf_links (Tao Chen)
- Reduce verifier's stack consumption (Yonghong Song)
- Implement mprog API for cgroup-bpf programs (Yonghong Song)
* tag 'bpf-next-6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (192 commits)
selftests/bpf: Migrate fexit_noreturns case into tracing_failure test suite
selftests/bpf: Add selftest for attaching tracing programs to functions in deny list
bpf: Add log for attaching tracing programs to functions in deny list
bpf: Show precise rejected function when attaching fexit/fmod_ret to __noreturn functions
bpf: Fix various typos in verifier.c comments
bpf: Add third round of bounds deduction
selftests/bpf: Test invariants on JSLT crossing sign
selftests/bpf: Test cross-sign 64bits range refinement
selftests/bpf: Update reg_bound range refinement logic
bpf: Improve bounds when s64 crosses sign boundary
bpf: Simplify bounds refinement from s32
selftests/bpf: Enable private stack tests for arm64
bpf, arm64: JIT support for private stack
bpf: Move bpf_jit_get_prog_name() to core.c
bpf, arm64: Fix fp initialization for exception boundary
umd: Remove usermode driver framework
bpf/preload: Don't select USERMODE_DRIVER
selftests/bpf: Fix test dynptr/test_dynptr_memset_xdp_chunks failure
selftests/bpf: Fix test dynptr/test_dynptr_copy_xdp failure
selftests/bpf: Increase xdp data size for arm64 64K page size
...
|
|
Introduce a generic API for unwinding user stacks.
In order to expand user space unwinding to be able to handle more complex
scenarios, such as deferred unwinding and reading user space information,
create a generic interface that all architectures can use that support the
various unwinding methods.
This is an alternative method for handling user space stack traces from
the simple stack_trace_save_user() API. This does not replace that
interface, but this interface will be used to expand the functionality of
user space stack walking.
None of the structures introduced will be exposed to user space tooling.
Support for frame pointer unwinding is added. For an architecture to
support frame pointer unwinding it needs to enable
CONFIG_HAVE_UNWIND_USER_FP and define ARCH_INIT_USER_FP_FRAME.
By encoding the frame offsets in struct unwind_user_frame, much of this
code can also be reused for future unwinder implementations like sframe.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Indu Bhagat <indu.bhagat@oracle.com>
Cc: "Jose E. Marchesi" <jemarch@gnu.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Sam James <sam@gentoo.org>
Link: https://lore.kernel.org/20250729182404.975790139@kernel.org
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Co-developed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/all/20250710164301.3094-2-mathieu.desnoyers@efficios.com/
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Co-developed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Once CONFIG_KSTACK_ERASE is enabled with Clang on i386, the build warns:
kernel/kstack_erase.c:168:2: warning: function with attribute 'no_caller_saved_registers' should only call a function with attribute 'no_caller_saved_registers' or be compiled with '-mgeneral-regs-only' [-Wexcessive-regsave]
Add -mgeneral-regs-only for the kstack_erase handler, to make Clang feel
better (it is effectively a no-op flag for the kernel). No binary
changes encountered.
Build & boot tested with Clang 21 on x86_64, and i386.
Build tested with GCC 14.2.0 on x86_64, i386, arm64, and arm.
Reported-by: Nathan Chancellor <nathan@kernel.org>
Closes: https://lore.kernel.org/all/20250726004313.GA3650901@ax162
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Kees Cook <kees@kernel.org>
|
|
The code is unused since 98e20e5e13d2 ("bpfilter: remove bpfilter"),
therefore remove it.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/bpf/20250721-remove-usermode-driver-v1-2-0d0083334382@linutronix.de
|
|
In preparation for adding Clang sanitizer coverage stack depth tracking
that can support stack depth callbacks:
- Add the new top-level CONFIG_KSTACK_ERASE option which will be
implemented either with the stackleak GCC plugin, or with the Clang
stack depth callback support.
- Rename CONFIG_GCC_PLUGIN_STACKLEAK as needed to CONFIG_KSTACK_ERASE,
but keep it for anything specific to the GCC plugin itself.
- Rename all exposed "STACKLEAK" names and files to "KSTACK_ERASE" (named
for what it does rather than what it protects against), but leave as
many of the internals alone as possible to avoid even more churn.
While here, also split "prev_lowest_stack" into CONFIG_KSTACK_ERASE_METRICS,
since that's the only place it is referenced from.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250717232519.2984886-1-kees@kernel.org
Signed-off-by: Kees Cook <kees@kernel.org>
|
|
This problem is similar to commit 7f8256ae0efb ("initramfs: Encode
dependency on KBUILD_BUILD_TIMESTAMP"): kernel/gen_kheaders.sh has an
internal dependency on KBUILD_BUILD_TIMESTAMP that is not exposed to
make, so changing KBUILD_BUILD_TIMESTAMP will not trigger a rebuild
of the archive.
Move $(KBUILD_BUILD_TIMESTAMP) to the Makefile so that is is recorded
in the *.cmd file.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|
|
When a header file is changed, kernel/gen_kheaders.sh may fail to update
kernel/kheaders_data.tar.xz.
[steps to reproduce]
[1] Build kernel/kheaders_data.tar.xz
$ make -j$(nproc) kernel/kheaders.o
DESCEND objtool
INSTALL libsubcmd_headers
CALL scripts/checksyscalls.sh
CHK kernel/kheaders_data.tar.xz
GEN kernel/kheaders_data.tar.xz
CC kernel/kheaders.o
[2] Modify a header without changing the file size
$ sed -i s/0xdeadbeef/0xfeedbeef/ include/linux/elfnote.h
[3] Rebuild kernel/kheaders_data.tar.xz
$ make -j$(nproc) kernel/kheaders.o
DESCEND objtool
INSTALL libsubcmd_headers
CALL scripts/checksyscalls.sh
CHK kernel/kheaders_data.tar.xz
kernel/kheaders_data.tar.xz is not updated if steps [1] - [3] are run
within the same minute.
The headers_md5 variable stores the MD5 hash of the 'ls -l' output
for all header files. This hash value is used to determine whether
kheaders_data.tar.xz needs to be rebuilt. However, 'ls -l' prints the
modification times with minute-level granularity. If a file is modified
within the same minute and its size remains the same, the MD5 hash does
not change.
To reliably detect file modifications, this commit rewrites
kernel/gen_kheaders.sh to output header dependencies to
kernel/.kheaders_data.tar.xz.cmd. Then, Make compares the timestamps
and reruns kernel/gen_kheaders.sh when necessary. This is the standard
mechanism used by Make and Kbuild.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- "hung_task: extend blocking task stacktrace dump to semaphore" from
Lance Yang enhances the hung task detector.
The detector presently dumps the blocking tasks's stack when it is
blocked on a mutex. Lance's series extends this to semaphores
- "nilfs2: improve sanity checks in dirty state propagation" from
Wentao Liang addresses a couple of minor flaws in nilfs2
- "scripts/gdb: Fixes related to lx_per_cpu()" from Illia Ostapyshyn
fixes a couple of issues in the gdb scripts
- "Support kdump with LUKS encryption by reusing LUKS volume keys" from
Coiby Xu addresses a usability problem with kdump.
When the dump device is LUKS-encrypted, the kdump kernel may not have
the keys to the encrypted filesystem. A full writeup of this is in
the series [0/N] cover letter
- "sysfs: add counters for lockups and stalls" from Max Kellermann adds
/sys/kernel/hardlockup_count and /sys/kernel/hardlockup_count and
/sys/kernel/rcu_stall_count
- "fork: Page operation cleanups in the fork code" from Pasha Tatashin
implements a number of code cleanups in fork.c
- "scripts/gdb/symbols: determine KASLR offset on s390 during early
boot" from Ilya Leoshkevich fixes some s390 issues in the gdb
scripts
* tag 'mm-nonmm-stable-2025-05-31-15-28' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (67 commits)
llist: make llist_add_batch() a static inline
delayacct: remove redundant code and adjust indentation
squashfs: add optional full compressed block caching
crash_dump, nvme: select CONFIGFS_FS as built-in
scripts/gdb/symbols: determine KASLR offset on s390 during early boot
scripts/gdb/symbols: factor out pagination_off()
scripts/gdb/symbols: factor out get_vmlinux()
kernel/panic.c: format kernel-doc comments
mailmap: update and consolidate Casey Connolly's name and email
nilfs2: remove wbc->for_reclaim handling
fork: define a local GFP_VMAP_STACK
fork: check charging success before zeroing stack
fork: clean-up naming of vm_stack/vm_struct variables in vmap stacks code
fork: clean-up ifdef logic around stack allocation
kernel/rcu/tree_stall: add /sys/kernel/rcu_stall_count
kernel/watchdog: add /sys/kernel/{hard,soft}lockup_count
x86/crash: make the page that stores the dm crypt keys inaccessible
x86/crash: pass dm crypt keys to kdump kernel
Revert "x86/mm: Remove unused __set_memory_prot()"
crash_dump: retrieve dm crypt keys in kdump kernel
...
|
|
A configfs /sys/kernel/config/crash_dm_crypt_keys is provided for user
space to make the dm crypt keys persist for the kdump kernel. Take the
case of dumping to a LUKS-encrypted target as an example, here is the life
cycle of the kdump copies of LUKS volume keys,
1. After the 1st kernel loads the initramfs during boot, systemd uses
an user-input passphrase to de-crypt the LUKS volume keys or simply
TPM-sealed volume keys and then save the volume keys to specified
keyring (using the --link-vk-to-keyring API) and the keys will expire
within specified time.
2. A user space tool (kdump initramfs loader like kdump-utils) create
key items inside /sys/kernel/config/crash_dm_crypt_keys to inform
the 1st kernel which keys are needed.
3. When the kdump initramfs is loaded by the kexec_file_load
syscall, the 1st kernel will iterate created key items, save the
keys to kdump reserved memory.
4. When the 1st kernel crashes and the kdump initramfs is booted, the
kdump initramfs asks the kdump kernel to create a user key using the
key stored in kdump reserved memory by writing yes to
/sys/kernel/crash_dm_crypt_keys/restore. Then the LUKS encrypted
device is unlocked with libcryptsetup's --volume-key-keyring API.
5. The system gets rebooted to the 1st kernel after dumping vmcore to
the LUKS encrypted device is finished
Eventually the keys have to stay in the kdump reserved memory for the
kdump kernel to unlock encrypted volumes. During this process, some
measures like letting the keys expire within specified time are desirable
to reduce security risk.
This patch assumes,
1) there are 128 LUKS devices at maximum to be unlocked thus
MAX_KEY_NUM=128.
2) a key description won't exceed 128 bytes thus KEY_DESC_MAX_LEN=128.
And here is a demo on how to interact with
/sys/kernel/config/crash_dm_crypt_keys,
# Add key #1
mkdir /sys/kernel/config/crash_dm_crypt_keys/7d26b7b4-e342-4d2d-b660-7426b0996720
# Add key #1's description
echo cryptsetup:7d26b7b4-e342-4d2d-b660-7426b0996720 > /sys/kernel/config/crash_dm_crypt_keys/description
# how many keys do we have now?
cat /sys/kernel/config/crash_dm_crypt_keys/count
1
# Add key# 2 in the same way
# how many keys do we have now?
cat /sys/kernel/config/crash_dm_crypt_keys/count
2
# the tree structure of /crash_dm_crypt_keys configfs
tree /sys/kernel/config/crash_dm_crypt_keys/
/sys/kernel/config/crash_dm_crypt_keys/
├── 7d26b7b4-e342-4d2d-b660-7426b0996720
│ └── description
├── count
├── fce2cd38-4d59-4317-8ce2-1fd24d52c46a
│ └── description
Link: https://lkml.kernel.org/r/20250502011246.99238-3-coxu@redhat.com
Signed-off-by: Coiby Xu <coxu@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: "Daniel P. Berrange" <berrange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Jan Pazdziora <jpazdziora@redhat.com>
Cc: Liu Pingfan <kernelfans@gmail.com>
Cc: Milan Broz <gmazyland@gmail.com>
Cc: Ondrej Kozina <okozina@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add the infrastructure to generate Kexec HandOver metadata. Kexec
HandOver is a mechanism that allows Linux to preserve state - arbitrary
properties as well as memory locations - across kexec.
It does so using 2 concepts:
1) KHO FDT - Every KHO kexec carries a KHO specific flattened device tree
blob that describes preserved memory regions. Device drivers can
register to KHO to serialize and preserve their states before kexec.
2) Scratch Regions - CMA regions that we allocate in the first kernel.
CMA gives us the guarantee that no handover pages land in those
regions, because handover pages must be at a static physical memory
location. We use these regions as the place to load future kexec
images so that they won't collide with any handover data.
Link: https://lkml.kernel.org/r/20250509074635.3187114-5-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Pratyush Yadav <ptyadav@amazon.de>
Signed-off-by: Pratyush Yadav <ptyadav@amazon.de>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
CONFIG_TRACE_BRANCH_PROFILING inserts a call to ftrace_likely_update()
for each use of likely() or unlikely(). That breaks noinstr rules if
the affected function is annotated as noinstr.
Disable branch profiling for files with noinstr functions. In addition
to some individual files, this also includes the entire arch/x86
subtree, as well as the kernel/entry, drivers/cpuidle, and drivers/idle
directories, all of which are noinstr-heavy.
Due to the nature of how sched binaries are built by combining multiple
.c files into one, branch profiling is disabled more broadly across the
sched code than would otherwise be needed.
This fixes many warnings like the following:
vmlinux.o: warning: objtool: do_syscall_64+0x40: call to ftrace_likely_update() leaves .noinstr.text section
vmlinux.o: warning: objtool: __rdgsbase_inactive+0x33: call to ftrace_likely_update() leaves .noinstr.text section
vmlinux.o: warning: objtool: handle_bug.isra.0+0x198: call to ftrace_likely_update() leaves .noinstr.text section
...
Reported-by: Ingo Molnar <mingo@kernel.org>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/fb94fc9303d48a5ed370498f54500cc4c338eb6d.1742586676.git.jpoimboe@kernel.org
|
|
Patch series "mm: introduce numa_memblks", v4.
Following the discussion about handling of CXL fixed memory windows on
arm64 [1] I decided to bite the bullet and move numa_memblks from x86 to
the generic code so they will be available on arm64/riscv and maybe on
loongarch sometime later.
While it could be possible to use memblock to describe CXL memory windows,
it currently lacks notion of unpopulated memory ranges and numa_memblks
does implement this.
Another reason to make numa_memblks generic is that both arch_numa (arm64
and riscv) and loongarch use trimmed copy of x86 code although there is no
fundamental reason why the same code cannot be used on all these
platforms. Having numa_memblks in mm/ will make it's interaction with
ACPI and FDT more consistent and I believe will reduce maintenance burden.
And with generic numa_memblks it is (almost) straightforward to enable
NUMA emulation on arm64 and riscv.
The first 9 commits in this series are cleanups that are not strictly
related to numa_memblks.
Commits 10-16 slightly reorder code in x86 to allow extracting numa_memblks
and NUMA emulation to the generic code.
Commits 17-19 actually move the code from arch/x86/ to mm/ and commits 20-22
does some aftermath cleanups.
Commit 23 updates of_numa_init() to return error of no NUMA nodes were
found in the device tree.
Commit 24 switches arch_numa to numa_memblks.
Commit 25 enables usage of phys_to_target_node() and
memory_add_physaddr_to_nid() with numa_memblks.
Commit 26 moves the description for numa=fake from x86 to admin-guide.
[1] https://lore.kernel.org/all/20240529171236.32002-1-Jonathan.Cameron@huawei.com/
This patch (of 26):
The stub functions in kernel/numa.c belong to mm/ rather than to kernel/
Link: https://lkml.kernel.org/r/20240807064110.1003856-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20240807064110.1003856-2-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, KEXEC_CORE select CRASH_CORE automatically because crash codes
need be built in to avoid compiling error when building kexec code even
though the crash dumping functionality is not enabled. E.g
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------
After splitting out crashkernel reservation code and vmcoreinfo exporting
code, there's only crash related code left in kernel/crash_core.c. Now
move crash related codes from kexec_core.c to crash_core.c and only build it
in when CONFIG_CRASH_DUMP=y.
And also wrap up crash codes inside CONFIG_CRASH_DUMP ifdeffery scope,
or replace inappropriate CONFIG_KEXEC_CORE ifdef with CONFIG_CRASH_DUMP
ifdef in generic kernel files.
With these changes, crash_core codes are abstracted from kexec codes and
can be disabled at all if only kexec reboot feature is wanted.
Link: https://lkml.kernel.org/r/20240124051254.67105-5-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In kdump kernel, /proc/vmcore is an elf file mapping the crashed kernel's
old memory content. Its elf header is constructed in 1st kernel and passed
to kdump kernel via elfcorehdr_addr. Config CRASH_DUMP enables the code
of 1st kernel's old memory accessing in different architectures.
Currently, config FA_DUMP has dependency on CRASH_DUMP because fadump
needs access global variable 'elfcorehdr_addr' to judge if it's in
kdump kernel within function is_kdump_kernel(). In the current
kernel/crash_dump.c, variable 'elfcorehdr_addr' is defined, and function
setup_elfcorehdr() used to parse kernel parameter to fetch the passed
value of elfcorehdr_addr. Only for accessing elfcorehdr_addr, FA_DUMP
really doesn't have to depends on CRASH_DUMP.
To remove the dependency of FA_DUMP on CRASH_DUMP to avoid confusion,
rename kernel/crash_dump.c to kernel/elfcorehdr.c, and build it when
CONFIG_VMCORE_INFO is ebabled. With this, FA_DUMP doesn't need to depend
on CRASH_DUMP.
[bhe@redhat.com: power/fadump: make FA_DUMP select CRASH_DUMP]
Link: https://lkml.kernel.org/r/Zb8D1ASrgX0qVm9z@MiWiFi-R3L-srv
Link: https://lkml.kernel.org/r/20240124051254.67105-4-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now move the relevant codes into separate files:
kernel/crash_reserve.c, include/linux/crash_reserve.h.
And add config item CRASH_RESERVE to control its enabling.
And also update the old ifdeffery of CONFIG_CRASH_CORE, including of
<linux/crash_core.h> and config item dependency on CRASH_CORE
accordingly.
And also do renaming as follows:
- arch/xxx/kernel/{crash_core.c => vmcore_info.c}
because they are only related to vmcoreinfo exporting on x86, arm64,
riscv.
And also Remove config item CRASH_CORE, and rely on CONFIG_KEXEC_CORE to
decide if build in crash_core.c.
[yang.lee@linux.alibaba.com: remove duplicated include in vmcore_info.c]
Link: https://lkml.kernel.org/r/20240126005744.16561-1-yang.lee@linux.alibaba.com
Link: https://lkml.kernel.org/r/20240124051254.67105-3-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Split crash out from kexec and clean up related config
items", v3.
Motivation:
=============
Previously, LKP reported a building error. When investigating, it can't
be resolved reasonablly with the present messy kdump config items.
https://lore.kernel.org/oe-kbuild-all/202312182200.Ka7MzifQ-lkp@intel.com/
The kdump (crash dumping) related config items could causes confusions:
Firstly,
CRASH_CORE enables codes including
- crashkernel reservation;
- elfcorehdr updating;
- vmcoreinfo exporting;
- crash hotplug handling;
Now fadump of powerpc, kcore dynamic debugging and kdump all selects
CRASH_CORE, while fadump
- fadump needs crashkernel parsing, vmcoreinfo exporting, and accessing
global variable 'elfcorehdr_addr';
- kcore only needs vmcoreinfo exporting;
- kdump needs all of the current kernel/crash_core.c.
So only enabling PROC_CORE or FA_DUMP will enable CRASH_CORE, this
mislead people that we enable crash dumping, actual it's not.
Secondly,
It's not reasonable to allow KEXEC_CORE select CRASH_CORE.
Because KEXEC_CORE enables codes which allocate control pages, copy
kexec/kdump segments, and prepare for switching. These codes are
shared by both kexec reboot and kdump. We could want kexec reboot,
but disable kdump. In that case, CRASH_CORE should not be selected.
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------
Thirdly,
It's not reasonable to allow CRASH_DUMP select KEXEC_CORE.
That could make KEXEC_CORE, CRASH_DUMP are enabled independently from
KEXEC or KEXEC_FILE. However, w/o KEXEC or KEXEC_FILE, the KEXEC_CORE
code built in doesn't make any sense because no kernel loading or
switching will happen to utilize the KEXEC_CORE code.
---------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_CRASH_DUMP=y
---------------------
In this case, what is worse, on arch sh and arm, KEXEC relies on MMU,
while CRASH_DUMP can still be enabled when !MMU, then compiling error is
seen as the lkp test robot reported in above link.
------arch/sh/Kconfig------
config ARCH_SUPPORTS_KEXEC
def_bool MMU
config ARCH_SUPPORTS_CRASH_DUMP
def_bool BROKEN_ON_SMP
---------------------------
Changes:
===========
1, split out crash_reserve.c from crash_core.c;
2, split out vmcore_infoc. from crash_core.c;
3, move crash related codes in kexec_core.c into crash_core.c;
4, remove dependency of FA_DUMP on CRASH_DUMP;
5, clean up kdump related config items;
6, wrap up crash codes in crash related ifdefs on all 8 arch-es
which support crash dumping, except of ppc;
Achievement:
===========
With above changes, I can rearrange the config item logic as below (the right
item depends on or is selected by the left item):
PROC_KCORE -----------> VMCORE_INFO
|----------> VMCORE_INFO
FA_DUMP----|
|----------> CRASH_RESERVE
---->VMCORE_INFO
/
|---->CRASH_RESERVE
KEXEC --| /|
|--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE
KEXEC_FILE --| \ |
\---->CRASH_HOTPLUG
KEXEC --|
|--> KEXEC_CORE (for kexec reboot only)
KEXEC_FILE --|
Test
========
On all 8 architectures, including x86_64, arm64, s390x, sh, arm, mips,
riscv, loongarch, I did below three cases of config item setting and
building all passed. Take configs on x86_64 as exampmle here:
(1) Both CONFIG_KEXEC and KEXEC_FILE is unset, then all kexec/kdump
items are unset automatically:
# Kexec and crash features
# CONFIG_KEXEC is not set
# CONFIG_KEXEC_FILE is not set
# end of Kexec and crash features
(2) set CONFIG_KEXEC_FILE and 'make olddefconfig':
---------------
# Kexec and crash features
CONFIG_CRASH_RESERVE=y
CONFIG_VMCORE_INFO=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
CONFIG_CRASH_DUMP=y
CONFIG_CRASH_HOTPLUG=y
CONFIG_CRASH_MAX_MEMORY_RANGES=8192
# end of Kexec and crash features
---------------
(3) unset CONFIG_CRASH_DUMP in case 2 and execute 'make olddefconfig':
------------------------
# Kexec and crash features
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
# end of Kexec and crash features
------------------------
Note:
For ppc, it needs investigation to make clear how to split out crash
code in arch folder. Hope Hari and Pingfan can help have a look, see if
it's doable. Now, I make it either have both kexec and crash enabled, or
disable both of them altogether.
This patch (of 14):
Both kdump and fa_dump of ppc rely on crashkernel reservation. Move the
relevant codes into separate files: crash_reserve.c,
include/linux/crash_reserve.h.
And also add config item CRASH_RESERVE to control its enabling of the
codes. And update config items which has relationship with crashkernel
reservation.
And also change ifdeffery from CONFIG_CRASH_CORE to CONFIG_CRASH_RESERVE
when those scopes are only crashkernel reservation related.
And also rename arch/XXX/include/asm/{crash_core.h => crash_reserve.h} on
arm64, x86 and risc-v because those architectures' crash_core.h is only
related to crashkernel reservation.
[akpm@linux-foundation.org: s/CRASH_RESEERVE/CRASH_RESERVE/, per Klara Modin]
Link: https://lkml.kernel.org/r/20240124051254.67105-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20240124051254.67105-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Moving these stub functions to a .c file means we can kill a sched.h
dependency on printk.h.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull module updates from Luis Chamberlain:
"The changes queued up for modules are pretty tame, mostly code removal
of moving of code.
Only two minor functional changes are made, the only one which stands
out is Sebastian Andrzej Siewior's simplification of module reference
counting by removing preempt_disable() and that has been tested on
linux-next for well over a month without no regressions.
I'm now, I guess, also a kitchen sink for some kallsyms changes"
[ There was a mis-communication about the concurrent module load changes
that I had expected to come through Luis despite me authoring the
patch. So some of the module updates were left hanging in the email
ether, and I just committed them separately.
It's my bad - I should have made it more clear that I expected my
own patches to come through the module tree too. Now they missed
linux-next, but hopefully that won't cause any issues - Linus ]
* tag 'v6.5-rc1-modules-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
kallsyms: make kallsyms_show_value() as generic function
kallsyms: move kallsyms_show_value() out of kallsyms.c
kallsyms: remove unsed API lookup_symbol_attrs
kallsyms: remove unused arch_get_kallsym() helper
module: Remove preempt_disable() from module reference counting.
|
|
Implement a hardlockup detector that doesn't doesn't need any extra
arch-specific support code to detect lockups. Instead of using something
arch-specific we will use the buddy system, where each CPU watches out for
another one. Specifically, each CPU will use its softlockup hrtimer to
check that the next CPU is processing hrtimer interrupts by verifying that
a counter is increasing.
NOTE: unlike the other hard lockup detectors, the buddy one can't easily
show what's happening on the CPU that locked up just by doing a simple
backtrace. It relies on some other mechanism in the system to get
information about the locked up CPUs. This could be support for NMI
backtraces like [1], it could be a mechanism for printing the PC of locked
CPUs at panic time like [2] / [3], or it could be something else. Even
though that means we still rely on arch-specific code, this arch-specific
code seems to often be implemented even on architectures that don't have a
hardlockup detector.
This style of hardlockup detector originated in some downstream Android
trees and has been rebased on / carried in ChromeOS trees for quite a long
time for use on arm and arm64 boards. Historically on these boards we've
leveraged mechanism [2] / [3] to get information about hung CPUs, but we
could move to [1].
Although the original motivation for the buddy system was for use on
systems without an arch-specific hardlockup detector, it can still be
useful to use even on systems that _do_ have an arch-specific hardlockup
detector. On x86, for instance, there is a 24-part patch series [4] in
progress switching the arch-specific hard lockup detector from a scarce
perf counter to a less-scarce hardware resource. Potentially the buddy
system could be a simpler alternative to free up the perf counter but
still get hard lockup detection.
Overall, pros (+) and cons (-) of the buddy system compared to an
arch-specific hardlockup detector (which might be implemented using
perf):
+ The buddy system is usable on systems that don't have an
arch-specific hardlockup detector, like arm32 and arm64 (though it's
being worked on for arm64 [5]).
+ The buddy system may free up scarce hardware resources.
+ If a CPU totally goes out to lunch (can't process NMIs) the buddy
system could still detect the problem (though it would be unlikely
to be able to get a stack trace).
+ The buddy system uses the same timer function to pet the hardlockup
detector on the running CPU as it uses to detect hardlockups on
other CPUs. Compared to other hardlockup detectors, this means it
generates fewer interrupts and thus is likely better able to let
CPUs stay idle longer.
- If all CPUs are hard locked up at the same time the buddy system
can't detect it.
- If we don't have SMP we can't use the buddy system.
- The buddy system needs an arch-specific mechanism (possibly NMI
backtrace) to get info about the locked up CPU.
[1] https://lore.kernel.org/r/20230419225604.21204-1-dianders@chromium.org
[2] https://issuetracker.google.com/172213129
[3] https://docs.kernel.org/trace/coresight/coresight-cpu-debug.html
[4] https://lore.kernel.org/lkml/20230301234753.28582-1-ricardo.neri-calderon@linux.intel.com/
[5] https://lore.kernel.org/linux-arm-kernel/20220903093415.15850-1-lecopzer.chen@mediatek.com/
Link: https://lkml.kernel.org/r/20230519101840.v5.14.I6bf789d21d0c3d75d382e7e51a804a7a51315f2c@changeid
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Guenter Roeck <groeck@chromium.org>
Signed-off-by: Tzung-Bi Shih <tzungbi@chromium.org>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ian Rogers <irogers@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The code currently in "watchdog_hld.c" is for detecting hardlockups using
perf, as evidenced by the line in the Makefile that only compiles this
file if CONFIG_HARDLOCKUP_DETECTOR_PERF is defined. Rename the file to
prepare for the buddy hardlockup detector, which doesn't use perf.
It could be argued that the new name makes it less obvious that this is a
hardlockup detector. While true, it's not hard to remember that the
"perf" detector is always a hardlockup detector and it's nice not to have
names that are too convoluted.
Link: https://lkml.kernel.org/r/20230519101840.v5.7.Ice803cb078d0e15fb2cbf49132f096ee2bd4199d@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
function kallsyms_show_value() is used by other parts
like modules_open(), kprobes_read() etc. which can work in case of
!KALLSYMS also.
e.g. as of now lsmod do not show module address if KALLSYMS is disabled.
since kallsyms_show_value() defination is not present, it returns false
in !KALLSYMS.
/ # lsmod
test 12288 0 - Live 0x0000000000000000 (O)
So kallsyms_show_value() can be made generic
without dependency on KALLSYMS.
Thus moving out function to a new file ksyms_common.c.
With this patch code is just moved to new file
and no functional change.
Co-developed-by: Onkarnath <onkarnath.1@samsung.com>
Signed-off-by: Onkarnath <onkarnath.1@samsung.com>
Signed-off-by: Maninder Singh <maninder1.s@samsung.com>
Reviewed-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull module updates from Luis Chamberlain:
"The summary of the changes for this pull requests is:
- Song Liu's new struct module_memory replacement
- Nick Alcock's MODULE_LICENSE() removal for non-modules
- My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded prior
to allocating the final module memory with vmalloc and the respective
debug code it introduces to help clarify the issue. Although the
functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to
have been picked up. Folks on larger CPU systems with modules will
want to just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details:
The functional change change in this pull request is the very first
patch from Song Liu which replaces the 'struct module_layout' with a
new 'struct module_memory'. The old data structure tried to put
together all types of supported module memory types in one data
structure, the new one abstracts the differences in memory types in a
module to allow each one to provide their own set of details. This
paves the way in the future so we can deal with them in a cleaner way.
If you look at changes they also provide a nice cleanup of how we
handle these different memory areas in a module. This change has been
in linux-next since before the merge window opened for v6.3 so to
provide more than a full kernel cycle of testing. It's a good thing as
quite a bit of fixes have been found for it.
Jason Baron then made dynamic debug a first class citizen module user
by using module notifier callbacks to allocate / remove module
specific dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area is
active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454e ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf").
Nick has been working on this *for years* and AFAICT I was the only
one to suggest two alternatives to this approach for tooling. The
complexity in one of my suggested approaches lies in that we'd need a
possible-obj-m and a could-be-module which would check if the object
being built is part of any kconfig build which could ever lead to it
being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0].
A more obvious yet theoretical approach I've suggested would be to
have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
well but that means getting kconfig symbol names mapping to modules
always, and I don't think that's the case today. I am not aware of
Nick or anyone exploring either of these options. Quite recently Josh
Poimboeuf has pointed out that live patching, kprobes and BPF would
benefit from resolving some part of the disambiguation as well but for
other reasons. The function granularity KASLR (fgkaslr) patches were
mentioned but Joe Lawrence has clarified this effort has been dropped
with no clear solution in sight [1].
In the meantime removing module license tags from code which could
never be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up, and
so you'll see quite a bit of Nick's patches in other pull requests for
this merge window. I just picked up the stragglers after rc3. LWN has
good coverage on the motivation behind this work [2] and the typical
cross-tree issues he ran into along the way. The only concrete blocker
issue he ran into was that we should not remove the MODULE_LICENSE()
tags from files which have no SPDX tags yet, even if they can never be
modules. Nick ended up giving up on his efforts due to having to do
this vetting and backlash he ran into from folks who really did *not
understand* the core of the issue nor were providing any alternative /
guidance. I've gone through his changes and dropped the patches which
dropped the module license tags where an SPDX license tag was missing,
it only consisted of 11 drivers. To see if a pull request deals with a
file which lacks SPDX tags you can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above, but
that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but it
demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees, and I
just picked up the slack after rc3 for the last kernel was out. Those
changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on a
systems with over 400 CPUs when KASAN was enabled due to running out
of virtual memory space. Although the functional change only consists
of 3 lines in the patch "module: avoid allocation if module is already
present and ready", proving that this was the best we can do on the
modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been in
linux-next since around rc3 of the last kernel, the actual final fix
for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported with
larger number of CPUs. Userspace is not yet fixed as it is taking a
bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge
them, but I'm currently inclined to just see if userspace can fix this
instead"
Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]
* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
module: add debugging auto-load duplicate module support
module: stats: fix invalid_mod_bytes typo
module: remove use of uninitialized variable len
module: fix building stats for 32-bit targets
module: stats: include uapi/linux/module.h
module: avoid allocation if module is already present and ready
module: add debug stats to help identify memory pressure
module: extract patient module check into helper
modules/kmod: replace implementation with a semaphore
Change DEFINE_SEMAPHORE() to take a number argument
module: fix kmemleak annotations for non init ELF sections
module: Ignore L0 and rename is_arm_mapping_symbol()
module: Move is_arm_mapping_symbol() to module_symbol.h
module: Sync code of is_arm_mapping_symbol()
scripts/gdb: use mem instead of core_layout to get the module address
interconnect: remove module-related code
interconnect: remove MODULE_LICENSE in non-modules
zswap: remove MODULE_LICENSE in non-modules
zpool: remove MODULE_LICENSE in non-modules
x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
...
|
|
The kernel/kmod.c is already only built if we enabled modules, so
just stuff it under kernel/module/kmod.c and unify the MAINTAINERS
file for it.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Qemu will create vhost devices in the kernel which perform network, SCSI,
etc IO and management operations from worker threads created by the
kthread API. Because the kthread API does a copy_process on the kthreadd
thread, the vhost layer has to use kthread_use_mm to access the Qemu
thread's memory and cgroup_attach_task_all to add itself to the Qemu
thread's cgroups, and it bypasses the RLIMIT_NPROC limit which can result
in VMs creating more threads than the admin expected.
This patch adds a new struct vhost_task which can be used instead of
kthreads. They allow the vhost layer to use copy_process and inherit
the userspace process's mm and cgroups, the task is accounted for
under the userspace's nproc count and can be seen in its process tree,
and other features like namespaces work and are inherited by default.
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull kernel hardening fixes from Kees Cook:
- Fix CFI failure with KASAN (Sami Tolvanen)
- Fix LKDTM + CFI under GCC 7 and 8 (Kristina Martsenko)
- Limit CONFIG_ZERO_CALL_USED_REGS to Clang > 15.0.6 (Nathan
Chancellor)
- Ignore "contents" argument in LoadPin's LSM hook handling
- Fix paste-o in /sys/kernel/warn_count API docs
- Use READ_ONCE() consistently for oops/warn limit reading
* tag 'hardening-v6.2-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
cfi: Fix CFI failure with KASAN
exit: Use READ_ONCE() for all oops/warn limit reads
security: Restrict CONFIG_ZERO_CALL_USED_REGS to gcc or clang > 15.0.6
lkdtm: cfi: Make PAC test work with GCC 7 and 8
docs: Fix path paste-o for /sys/kernel/warn_count
LoadPin: Ignore the "contents" argument of the LSM hooks
|
|
When CFI_CLANG and KASAN are both enabled, LLVM doesn't generate a
CFI type hash for asan.module_ctor functions in translation units
where CFI is disabled, which leads to a CFI failure during boot when
do_ctors calls the affected constructors:
CFI failure at do_basic_setup+0x64/0x90 (target:
asan.module_ctor+0x0/0x28; expected type: 0xa540670c)
Specifically, this happens because CFI is disabled for
kernel/cfi.c. There's no reason to keep CFI disabled here anymore, so
fix the failure by not filtering out CC_FLAGS_CFI for the file.
Note that https://reviews.llvm.org/rG3b14862f0a96 fixed the issue
where LLVM didn't emit CFI type hashes for any sanitizer constructors,
but now type hashes are emitted correctly for TUs that use CFI.
Link: https://github.com/ClangBuiltLinux/linux/issues/1742
Fixes: 89245600941e ("cfi: Switch to -fsanitize=kcfi")
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221222225747.3538676-1-samitolvanen@google.com
|
|
Added test cases for basic functions and performance of functions
kallsyms_lookup_name(), kallsyms_on_each_symbol() and
kallsyms_on_each_match_symbol(). It also calculates the compression rate
of the kallsyms compression algorithm for the current symbol set.
The basic functions test begins by testing a set of symbols whose address
values are known. Then, traverse all symbol addresses and find the
corresponding symbol name based on the address. It's impossible to
determine whether these addresses are correct, but we can use the above
three functions along with the addresses to test each other. Due to the
traversal operation of kallsyms_on_each_symbol() is too slow, only 60
symbols can be tested in one second, so let it test on average once
every 128 symbols. The other two functions validate all symbols.
If the basic functions test is passed, print only performance test
results. If the test fails, print error information, but do not perform
subsequent performance tests.
Start self-test automatically after system startup if
CONFIG_KALLSYMS_SELFTEST=y.
Example of output content: (prefix 'kallsyms_selftest:' is omitted
start
---------------------------------------------------------
| nr_symbols | compressed size | original size | ratio(%) |
|---------------------------------------------------------|
| 107543 | 1357912 | 2407433 | 56.40 |
---------------------------------------------------------
kallsyms_lookup_name() looked up 107543 symbols
The time spent on each symbol is (ns): min=630, max=35295, avg=7353
kallsyms_on_each_symbol() traverse all: 11782628 ns
kallsyms_on_each_match_symbol() traverse all: 9261 ns
finish
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
EFI stub cannot be linked with KMSAN runtime, so we disable
instrumentation for it.
Instrumenting kcov, stackdepot or lockdep leads to infinite recursion
caused by instrumentation hooks calling instrumented code again.
Link: https://lkml.kernel.org/r/20220915150417.722975-13-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The only use case of the platform_has() infrastructure has been
removed again, so remove the whole feature.
Signed-off-by: Juergen Gross <jgross@suse.com>
Tested-by: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> # Arm64 guest using Xen
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Link: https://lore.kernel.org/r/20220622063838.8854-3-jgross@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
|
|
Add a simple infrastructure for setting, resetting and querying
platform feature flags.
Flags can be either global or architecture specific.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Tested-by: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> # Arm64 only
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull modules updates from Luis Chamberlain:
- It was time to tidy up kernel/module.c and one way of starting with
that effort was to split it up into files. At my request Aaron Tomlin
spearheaded that effort with the goal to not introduce any functional
at all during that endeavour. The penalty for the split is +1322
bytes total, +112 bytes in data, +1210 bytes in text while bss is
unchanged. One of the benefits of this other than helping make the
code easier to read and review is summoning more help on review for
changes with livepatching so kernel/module/livepatch.c is now pegged
as maintained by the live patching folks.
The before and after with just the move on a defconfig on x86-64:
$ size kernel/module.o
text data bss dec hex filename
38434 4540 104 43078 a846 kernel/module.o
$ size -t kernel/module/*.o
text data bss dec hex filename
4785 120 0 4905 1329 kernel/module/kallsyms.o
28577 4416 104 33097 8149 kernel/module/main.o
1158 8 0 1166 48e kernel/module/procfs.o
902 108 0 1010 3f2 kernel/module/strict_rwx.o
3390 0 0 3390 d3e kernel/module/sysfs.o
832 0 0 832 340 kernel/module/tree_lookup.o
39644 4652 104 44400 ad70 (TOTALS)
- Aaron added module unload taint tracking (MODULE_UNLOAD_TAINT_TRACKING),
to enable tracking unloaded modules which did taint the kernel.
- Christophe Leroy added CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
which lets architectures to request having modules data in vmalloc
area instead of module area. There are three reasons why an
architecture might want this:
a) On some architectures (like book3s/32) it is not possible to
protect against execution on a page basis. The exec stuff can be
mapped by different arch segment sizes (on book3s/32 that is 256M
segments). By default the module area is in an Exec segment while
vmalloc area is in a NoExec segment. Using vmalloc lets you muck
with module data as NoExec on those architectures whereas before
you could not.
b) By pushing more module data to vmalloc you also increase the
probability of module text to remain within a closer distance
from kernel core text and this reduces trampolines, this has been
reported on arm first and powerpc folks are following that lead.
c) Free'ing module_alloc() (Exec by default) area leaves this
exposed as Exec by default, some architectures have some security
enhancements to set this as NoExec on free, and splitting module
data with text let's future generic special allocators be added
to the kernel without having developers try to grok the tribal
knowledge per arch. Work like Rick Edgecombe's permission vmalloc
interface [0] becomes easier to address over time.
[0] https://lore.kernel.org/lkml/20201120202426.18009-1-rick.p.edgecombe@intel.com/#r
- Masahiro Yamada's symbol search enhancements
* tag 'modules-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (33 commits)
module: merge check_exported_symbol() into find_exported_symbol_in_section()
module: do not binary-search in __ksymtab_gpl if fsa->gplok is false
module: do not pass opaque pointer for symbol search
module: show disallowed symbol name for inherit_taint()
module: fix [e_shstrndx].sh_size=0 OOB access
module: Introduce module unload taint tracking
module: Move module_assert_mutex_or_preempt() to internal.h
module: Make module_flags_taint() accept a module's taints bitmap and usable outside core code
module.h: simplify MODULE_IMPORT_NS
powerpc: Select ARCH_WANTS_MODULES_DATA_IN_VMALLOC on book3s/32 and 8xx
module: Remove module_addr_min and module_addr_max
module: Add CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
module: Introduce data_layout
module: Prepare for handling several RB trees
module: Always have struct mod_tree_root
module: Rename debug_align() as strict_align()
module: Rework layout alignment to avoid BUG_ON()s
module: Move module_enable_x() and frob_text() in strict_rwx.c
module: Make module_enable_x() independent of CONFIG_ARCH_HAS_STRICT_MODULE_RWX
module: Move version support into a separate file
...
|
|
System.map shows that vmlinux contains several instances of
__static_call_return0():
c0004fc0 t __static_call_return0
c0011518 t __static_call_return0
c00d8160 t __static_call_return0
arch_static_call_transform() uses the middle one to check whether we are
setting a call to __static_call_return0 or not:
c0011520 <arch_static_call_transform>:
c0011520: 3d 20 c0 01 lis r9,-16383 <== r9 = 0xc001 << 16
c0011524: 39 29 15 18 addi r9,r9,5400 <== r9 += 0x1518
c0011528: 7c 05 48 00 cmpw r5,r9 <== r9 has value 0xc0011518 here
So if static_call_update() is called with one of the other instances of
__static_call_return0(), arch_static_call_transform() won't recognise it.
In order to work properly, global single instance of __static_call_return0() is required.
Fixes: 3f2a8fc4b15d ("static_call/x86: Add __static_call_return0()")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/30821468a0e7d28251954b578e5051dc09300d04.1647258493.git.christophe.leroy@csgroup.eu
|
|
No functional changes.
This patch moves all module related code into a separate directory,
modifies each file name and creates a new Makefile. Note: this effort
is in preparation to refactor core module code.
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Use rethook for kretprobe function return hooking if the arch sets
CONFIG_HAVE_RETHOOK=y. In this case, CONFIG_KRETPROBE_ON_RETHOOK is
set to 'y' automatically, and the kretprobe internal data fields
switches to use rethook. If not, it continues to use kretprobe
specific function return hooks.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/164826162556.2455864.12255833167233452047.stgit@devnote2
|
|
Current scheme of having userspace decompress kernel modules before
loading them into the kernel runs afoul of LoadPin security policy, as
it loses link between the source of kernel module on the disk and binary
blob that is being loaded into the kernel. To solve this issue let's
implement decompression in kernel, so that we can pass a file descriptor
of compressed module file into finit_module() which will keep LoadPin
happy.
To let userspace know what compression/decompression scheme kernel
supports it will create /sys/module/compression attribute. kmod can read
this attribute and decide if it can pass compressed file to
finit_module(). New MODULE_INIT_COMPRESSED_DATA flag indicates that the
kernel should attempt to decompress the data read from file descriptor
prior to trying load the module.
To simplify things kernel will only implement single decompression
method matching compression method selected when generating modules.
This patch implements gzip and xz; more can be added later,
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
- kprobes: Restructured stack unwinder to show properly on x86 when a
stack dump happens from a kretprobe callback.
- Fix to bootconfig parsing
- Have tracefs allow owner and group permissions by default (only
denying others). There's been pressure to allow non root to tracefs
in a controlled fashion, and using groups is probably the safest.
- Bootconfig memory managament updates.
- Bootconfig clean up to have the tools directory be less dependent on
changes in the kernel tree.
- Allow perf to be traced by function tracer.
- Rewrite of function graph tracer to be a callback from the function
tracer instead of having its own trampoline (this change will happen
on an arch by arch basis, and currently only x86_64 implements it).
- Allow multiple direct trampolines (bpf hooks to functions) be batched
together in one synchronization.
- Allow histogram triggers to add variables that can perform
calculations against the event's fields.
- Use the linker to determine architecture callbacks from the ftrace
trampoline to allow for proper parameter prototypes and prevent
warnings from the compiler.
- Extend histogram triggers to key off of variables.
- Have trace recursion use bit magic to determine preempt context over
if branches.
- Have trace recursion disable preemption as all use cases do anyway.
- Added testing for verification of tracing utilities.
- Various small clean ups and fixes.
* tag 'trace-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (101 commits)
tracing/histogram: Fix semicolon.cocci warnings
tracing/histogram: Fix documentation inline emphasis warning
tracing: Increase PERF_MAX_TRACE_SIZE to handle Sentinel1 and docker together
tracing: Show size of requested perf buffer
bootconfig: Initialize ret in xbc_parse_tree()
ftrace: do CPU checking after preemption disabled
ftrace: disable preemption when recursion locked
tracing/histogram: Document expression arithmetic and constants
tracing/histogram: Optimize division by a power of 2
tracing/histogram: Covert expr to const if both operands are constants
tracing/histogram: Simplify handling of .sym-offset in expressions
tracing: Fix operator precedence for hist triggers expression
tracing: Add division and multiplication support for hist triggers
tracing: Add support for creating hist trigger variables from literal
selftests/ftrace: Stop tracing while reading the trace file by default
MAINTAINERS: Update KPROBES and TRACING entries
test_kprobes: Move it from kernel/ to lib/
docs, kprobes: Remove invalid URL and add new reference
samples/kretprobes: Fix return value if register_kretprobe() failed
lib/bootconfig: Fix the xbc_get_info kerneldoc
...
|
|
Since config KPROBES_SANITY_TEST is in lib/Kconfig.debug, it is better to
let test_kprobes.c in lib/, just like other similar tests found in lib/.
Link: https://lkml.kernel.org/r/1635213091-24387-4-git-send-email-yangtiezhu@loongson.cn
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
In preparation for splitup..
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: André Almeida <andrealmeid@collabora.com>
Link: https://lore.kernel.org/r/20210923171111.300673-2-andrealmeid@collabora.com
|
|
If the timestamp of the .config file is updated, config_data.gz is
regenerated, then vmlinux is re-linked. This occurs even if the content
of the .config has not changed at all.
This issue was mitigated by commit 67424f61f813 ("kconfig: do not write
.config if the content is the same"); Kconfig does not update the
.config when it ends up with the identical configuration.
The issue is remaining when the .config is created by *_defconfig with
some config fragment(s) applied on top.
This is typical for powerpc and mips, where several *_defconfig targets
are constructed by using merge_config.sh.
One workaround is to have the copy of the .config. The filechk rule
updates the copy, kernel/config_data, by checking the content instead
of the timestamp.
With this commit, the second run with the same configuration avoids
the needless rebuilds.
$ make ARCH=mips defconfig all
[ snip ]
$ make ARCH=mips defconfig all
*** Default configuration is based on target '32r2el_defconfig'
Using ./arch/mips/configs/generic_defconfig as base
Merging arch/mips/configs/generic/32r2.config
Merging arch/mips/configs/generic/el.config
Merging ./arch/mips/configs/generic/board-boston.config
Merging ./arch/mips/configs/generic/board-ni169445.config
Merging ./arch/mips/configs/generic/board-ocelot.config
Merging ./arch/mips/configs/generic/board-ranchu.config
Merging ./arch/mips/configs/generic/board-sead-3.config
Merging ./arch/mips/configs/generic/board-xilfpga.config
#
# configuration written to .config
#
SYNC include/config/auto.conf
CALL scripts/checksyscalls.sh
CALL scripts/atomic/check-atomics.sh
CHK include/generated/compile.h
CHK include/generated/autoksyms.h
Reported-by: Elliot Berman <eberman@codeaurora.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|